Single-cell classification, analysis, and its application using deep learning techniques

Single-cell analysis (SCA) improves the detection of cancer, the immune system, and chronic diseases from complicated biological processes. SCA techniques generate high-dimensional, innovative, and complex data, making traditional analysis difficult and impractical. In the different cell types, conv...

Full description

Saved in:
Bibliographic Details
Main Authors: Narayanamurthy, Vigneswaran, R. Premkumar, K.G. Harini Devi, Deepika M, Gaayathry E, Srinivasan, Arthi, Jadhav, Pramod, Shankar, Futane Abhishek
Format: Article
Language:English
Published: Elsevier Ireland Ltd 2024
Online Access:http://eprints.utem.edu.my/id/eprint/27478/2/0263114052024104841.PDF
http://eprints.utem.edu.my/id/eprint/27478/
https://pdf.sciencedirectassets.com/271079/1-s2.0-S0303264724X00027/1-s2.0-S0303264724000273/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEJH%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJIMEYCIQDFGjeWPAdjib%2BGkd5G5mX4lR2jsd%2FpiciRaXffQnqlHwIhALRxjNlN4B86GHC6XM3TFiEm7%2FIe%2FM6J72KE8h74TupsKrMFCDoQBRoMMDU5MDAzNTQ2ODY1IgwQH2Zh5YKTcAS0VxYqkAVZtn1s%2FoX5WeQFKKMNgc%2BxQAKAiAH7J%2FzvC7LvKnGdj%2Bs%2BTaOaFh60SQ1nppgavX%2F0SZ%2FGcmmtLmaWpAkJPDW1SOYRTGl0PaVUPB1LWXfx3%2BACiIMnT833Y3FBHSy8%2BXJjMGk%2BKUrFAsWyoPLU4avzIksyKg3bkgVwZ9KYXePmXcJu3%2FB7eIdeoxfhu903I7I2JLquS5CFuCxX7oDp5OdHklsTaX0cbIMedli0am4viJjgrB9DyjnA%2BQoH9E1SJsEdgflRgIcOGZqOr4EMz42PrZGI80Pfj7d4ShWaI%2FI7mU%2Fv4axvPH2BALoYz0VRHuwU10IgxnA2%2B2EHbgpxLPgENUdmLxHq5K1rcZp48lvpGJzA8gzjd1jsIl8xnHKV4YXr%2BwXeq3Cw%2FdDrXBIiKvXVE3DtrEmhlGyZ6To7EPb8FQQabLhKEbVF%2BEI2yvcZJzYR%2F%2Bv%2BSMbjYUuM%2B0ZtE1pqKFKapuJvlJNRC98fzemu5oe51tANHfai2o8y7JnRDJ6WkwYU7SO8P2HipnPD2Rx6utq1GgW2TjSvv3GkrSnCKRJ6UgpyJUTnXUU3kYFcck1%2FL4o9f0SQuMDYkL%2BwcRtAdIQidwt39AqLy6oMjVBPwvPl1r7q0Q%2BTJtUNaFoUZXZDs5T3mhwdRUDX0ABTJVkGLReWeOHYRotzugiNQ56ZE18dWLPfI0WRmEbIcsdjrtYg7fF%2BLu4nd9nhh9j%2FDyuJF81dBGSUPZS8xjWuZRCGqtIDVcrKyNOH0k%2BKS1l5xidYcMZrmwqlyuTe%2F%2FKrUpHEnbKaxZvw8sSpRW%2FNunsGpgczfwvSvyzUlFCbBGKElQUb5DHtBjAS1RtKIeWa5hjdenhMCqTpPqyCnICX2n7IgDCk%2F82zBjqwAQIVm3dTIx2jazetf3tBxQinsLM30s%2BtcuxAXw%2F9mfPyUyZVLlFiEogK5Jj3jOf%2BAj19ubbd9HTz%2BxGjQcLJuByoR6qSxBZUbnPYlOsIfkG0cFbaTZbDgBny6XyoUPjSvrmhTFUtkZw28p70aMaEeglzkVKHM3Y4BYqKoGMCQkfWITGbZf20QtNaKQflorToskdMDZpCyBoiHKQR26eUKdThHIuVWe5KNX4JRmdZi6Dd&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240620T022110Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY6K5FLZVQ%2F20240620%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=0f6d9e4ba70ef0f0ac6c4077a9a423efe81cc17727ef8f67b706bb80c46b7e44&hash=80b4158bc0cb1eac55821e8c9f26ca4b9f99be664eaf43a249b9452fd9a9f395&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0303264724000273&tid=spdf-608e4a8d-d0c8-4ff8-99fe-67c546a4a486&sid=a4e42670972a454c3659d888e3beef2c9b85gxrqb&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=031c575f58565b5d05&rr=896848a15c6413e5&cc=my
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.utem.eprints.27478
record_format eprints
spelling my.utem.eprints.274782024-07-25T11:26:37Z http://eprints.utem.edu.my/id/eprint/27478/ Single-cell classification, analysis, and its application using deep learning techniques Narayanamurthy, Vigneswaran R. Premkumar K.G. Harini Devi Deepika M Gaayathry E Srinivasan, Arthi Jadhav, Pramod Shankar, Futane Abhishek Single-cell analysis (SCA) improves the detection of cancer, the immune system, and chronic diseases from complicated biological processes. SCA techniques generate high-dimensional, innovative, and complex data, making traditional analysis difficult and impractical. In the different cell types, conventional cell sequencing methods have signal transformation and disease detection limitations. To overcome these challenges, various deep learning techniques (DL) have outperformed standard state-of-the-art computer algorithms in SCA techniques. This review discusses DL application in SCA and presents a detailed study on improving SCA data processing and analysis. Firstly, we introduced fundamental concepts and critical points of cell analysis techniques, which illustrate the application of SCA. Secondly, various effective DL strategies apply to SCA to analyze data and provide significant results from complex data sources. Finally, we explored DL as a future direction in SCA and highlighted new challenges and opportunities for the rapidly evolving field of single-cell omics. Elsevier Ireland Ltd 2024-02 Article PeerReviewed text en http://eprints.utem.edu.my/id/eprint/27478/2/0263114052024104841.PDF Narayanamurthy, Vigneswaran and R. Premkumar and K.G. Harini Devi and Deepika M and Gaayathry E and Srinivasan, Arthi and Jadhav, Pramod and Shankar, Futane Abhishek (2024) Single-cell classification, analysis, and its application using deep learning techniques. BioSystems, 237. 01-12. ISSN 0303-2647 https://pdf.sciencedirectassets.com/271079/1-s2.0-S0303264724X00027/1-s2.0-S0303264724000273/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEJH%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJIMEYCIQDFGjeWPAdjib%2BGkd5G5mX4lR2jsd%2FpiciRaXffQnqlHwIhALRxjNlN4B86GHC6XM3TFiEm7%2FIe%2FM6J72KE8h74TupsKrMFCDoQBRoMMDU5MDAzNTQ2ODY1IgwQH2Zh5YKTcAS0VxYqkAVZtn1s%2FoX5WeQFKKMNgc%2BxQAKAiAH7J%2FzvC7LvKnGdj%2Bs%2BTaOaFh60SQ1nppgavX%2F0SZ%2FGcmmtLmaWpAkJPDW1SOYRTGl0PaVUPB1LWXfx3%2BACiIMnT833Y3FBHSy8%2BXJjMGk%2BKUrFAsWyoPLU4avzIksyKg3bkgVwZ9KYXePmXcJu3%2FB7eIdeoxfhu903I7I2JLquS5CFuCxX7oDp5OdHklsTaX0cbIMedli0am4viJjgrB9DyjnA%2BQoH9E1SJsEdgflRgIcOGZqOr4EMz42PrZGI80Pfj7d4ShWaI%2FI7mU%2Fv4axvPH2BALoYz0VRHuwU10IgxnA2%2B2EHbgpxLPgENUdmLxHq5K1rcZp48lvpGJzA8gzjd1jsIl8xnHKV4YXr%2BwXeq3Cw%2FdDrXBIiKvXVE3DtrEmhlGyZ6To7EPb8FQQabLhKEbVF%2BEI2yvcZJzYR%2F%2Bv%2BSMbjYUuM%2B0ZtE1pqKFKapuJvlJNRC98fzemu5oe51tANHfai2o8y7JnRDJ6WkwYU7SO8P2HipnPD2Rx6utq1GgW2TjSvv3GkrSnCKRJ6UgpyJUTnXUU3kYFcck1%2FL4o9f0SQuMDYkL%2BwcRtAdIQidwt39AqLy6oMjVBPwvPl1r7q0Q%2BTJtUNaFoUZXZDs5T3mhwdRUDX0ABTJVkGLReWeOHYRotzugiNQ56ZE18dWLPfI0WRmEbIcsdjrtYg7fF%2BLu4nd9nhh9j%2FDyuJF81dBGSUPZS8xjWuZRCGqtIDVcrKyNOH0k%2BKS1l5xidYcMZrmwqlyuTe%2F%2FKrUpHEnbKaxZvw8sSpRW%2FNunsGpgczfwvSvyzUlFCbBGKElQUb5DHtBjAS1RtKIeWa5hjdenhMCqTpPqyCnICX2n7IgDCk%2F82zBjqwAQIVm3dTIx2jazetf3tBxQinsLM30s%2BtcuxAXw%2F9mfPyUyZVLlFiEogK5Jj3jOf%2BAj19ubbd9HTz%2BxGjQcLJuByoR6qSxBZUbnPYlOsIfkG0cFbaTZbDgBny6XyoUPjSvrmhTFUtkZw28p70aMaEeglzkVKHM3Y4BYqKoGMCQkfWITGbZf20QtNaKQflorToskdMDZpCyBoiHKQR26eUKdThHIuVWe5KNX4JRmdZi6Dd&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240620T022110Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY6K5FLZVQ%2F20240620%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=0f6d9e4ba70ef0f0ac6c4077a9a423efe81cc17727ef8f67b706bb80c46b7e44&hash=80b4158bc0cb1eac55821e8c9f26ca4b9f99be664eaf43a249b9452fd9a9f395&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0303264724000273&tid=spdf-608e4a8d-d0c8-4ff8-99fe-67c546a4a486&sid=a4e42670972a454c3659d888e3beef2c9b85gxrqb&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=031c575f58565b5d05&rr=896848a15c6413e5&cc=my 10.1016/j.biosystems.2024.105142
institution Universiti Teknikal Malaysia Melaka
building UTEM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknikal Malaysia Melaka
content_source UTEM Institutional Repository
url_provider http://eprints.utem.edu.my/
language English
description Single-cell analysis (SCA) improves the detection of cancer, the immune system, and chronic diseases from complicated biological processes. SCA techniques generate high-dimensional, innovative, and complex data, making traditional analysis difficult and impractical. In the different cell types, conventional cell sequencing methods have signal transformation and disease detection limitations. To overcome these challenges, various deep learning techniques (DL) have outperformed standard state-of-the-art computer algorithms in SCA techniques. This review discusses DL application in SCA and presents a detailed study on improving SCA data processing and analysis. Firstly, we introduced fundamental concepts and critical points of cell analysis techniques, which illustrate the application of SCA. Secondly, various effective DL strategies apply to SCA to analyze data and provide significant results from complex data sources. Finally, we explored DL as a future direction in SCA and highlighted new challenges and opportunities for the rapidly evolving field of single-cell omics.
format Article
author Narayanamurthy, Vigneswaran
R. Premkumar
K.G. Harini Devi
Deepika M
Gaayathry E
Srinivasan, Arthi
Jadhav, Pramod
Shankar, Futane Abhishek
spellingShingle Narayanamurthy, Vigneswaran
R. Premkumar
K.G. Harini Devi
Deepika M
Gaayathry E
Srinivasan, Arthi
Jadhav, Pramod
Shankar, Futane Abhishek
Single-cell classification, analysis, and its application using deep learning techniques
author_facet Narayanamurthy, Vigneswaran
R. Premkumar
K.G. Harini Devi
Deepika M
Gaayathry E
Srinivasan, Arthi
Jadhav, Pramod
Shankar, Futane Abhishek
author_sort Narayanamurthy, Vigneswaran
title Single-cell classification, analysis, and its application using deep learning techniques
title_short Single-cell classification, analysis, and its application using deep learning techniques
title_full Single-cell classification, analysis, and its application using deep learning techniques
title_fullStr Single-cell classification, analysis, and its application using deep learning techniques
title_full_unstemmed Single-cell classification, analysis, and its application using deep learning techniques
title_sort single-cell classification, analysis, and its application using deep learning techniques
publisher Elsevier Ireland Ltd
publishDate 2024
url http://eprints.utem.edu.my/id/eprint/27478/2/0263114052024104841.PDF
http://eprints.utem.edu.my/id/eprint/27478/
https://pdf.sciencedirectassets.com/271079/1-s2.0-S0303264724X00027/1-s2.0-S0303264724000273/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEJH%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJIMEYCIQDFGjeWPAdjib%2BGkd5G5mX4lR2jsd%2FpiciRaXffQnqlHwIhALRxjNlN4B86GHC6XM3TFiEm7%2FIe%2FM6J72KE8h74TupsKrMFCDoQBRoMMDU5MDAzNTQ2ODY1IgwQH2Zh5YKTcAS0VxYqkAVZtn1s%2FoX5WeQFKKMNgc%2BxQAKAiAH7J%2FzvC7LvKnGdj%2Bs%2BTaOaFh60SQ1nppgavX%2F0SZ%2FGcmmtLmaWpAkJPDW1SOYRTGl0PaVUPB1LWXfx3%2BACiIMnT833Y3FBHSy8%2BXJjMGk%2BKUrFAsWyoPLU4avzIksyKg3bkgVwZ9KYXePmXcJu3%2FB7eIdeoxfhu903I7I2JLquS5CFuCxX7oDp5OdHklsTaX0cbIMedli0am4viJjgrB9DyjnA%2BQoH9E1SJsEdgflRgIcOGZqOr4EMz42PrZGI80Pfj7d4ShWaI%2FI7mU%2Fv4axvPH2BALoYz0VRHuwU10IgxnA2%2B2EHbgpxLPgENUdmLxHq5K1rcZp48lvpGJzA8gzjd1jsIl8xnHKV4YXr%2BwXeq3Cw%2FdDrXBIiKvXVE3DtrEmhlGyZ6To7EPb8FQQabLhKEbVF%2BEI2yvcZJzYR%2F%2Bv%2BSMbjYUuM%2B0ZtE1pqKFKapuJvlJNRC98fzemu5oe51tANHfai2o8y7JnRDJ6WkwYU7SO8P2HipnPD2Rx6utq1GgW2TjSvv3GkrSnCKRJ6UgpyJUTnXUU3kYFcck1%2FL4o9f0SQuMDYkL%2BwcRtAdIQidwt39AqLy6oMjVBPwvPl1r7q0Q%2BTJtUNaFoUZXZDs5T3mhwdRUDX0ABTJVkGLReWeOHYRotzugiNQ56ZE18dWLPfI0WRmEbIcsdjrtYg7fF%2BLu4nd9nhh9j%2FDyuJF81dBGSUPZS8xjWuZRCGqtIDVcrKyNOH0k%2BKS1l5xidYcMZrmwqlyuTe%2F%2FKrUpHEnbKaxZvw8sSpRW%2FNunsGpgczfwvSvyzUlFCbBGKElQUb5DHtBjAS1RtKIeWa5hjdenhMCqTpPqyCnICX2n7IgDCk%2F82zBjqwAQIVm3dTIx2jazetf3tBxQinsLM30s%2BtcuxAXw%2F9mfPyUyZVLlFiEogK5Jj3jOf%2BAj19ubbd9HTz%2BxGjQcLJuByoR6qSxBZUbnPYlOsIfkG0cFbaTZbDgBny6XyoUPjSvrmhTFUtkZw28p70aMaEeglzkVKHM3Y4BYqKoGMCQkfWITGbZf20QtNaKQflorToskdMDZpCyBoiHKQR26eUKdThHIuVWe5KNX4JRmdZi6Dd&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240620T022110Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY6K5FLZVQ%2F20240620%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=0f6d9e4ba70ef0f0ac6c4077a9a423efe81cc17727ef8f67b706bb80c46b7e44&hash=80b4158bc0cb1eac55821e8c9f26ca4b9f99be664eaf43a249b9452fd9a9f395&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0303264724000273&tid=spdf-608e4a8d-d0c8-4ff8-99fe-67c546a4a486&sid=a4e42670972a454c3659d888e3beef2c9b85gxrqb&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=031c575f58565b5d05&rr=896848a15c6413e5&cc=my
_version_ 1806429973166161920
score 13.211869