Measuring driver cognitive distraction through lips and eyebrows
Cognitive distraction is one of the several contributory factors in road accidents. A number of cognitive distraction detection methods have been developed. One of the most popular methods is based on physiological measurement. Head orientation, gaze rotation, blinking and pupil diameter are among p...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute of Advanced Engineering and Science
2022
|
Online Access: | http://eprints.utem.edu.my/id/eprint/26226/2/MEASURING%20DRIVER%20COGNITIVE%20DISTRACTION%20THROUGH%20LIPS%20AND%20EYEBROWS.PDF http://eprints.utem.edu.my/id/eprint/26226/ https://ijece.iaescore.com/index.php/IJECE/article/view/25522/15382 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utem.eprints.26226 |
---|---|
record_format |
eprints |
spelling |
my.utem.eprints.262262023-03-02T12:13:56Z http://eprints.utem.edu.my/id/eprint/26226/ Measuring driver cognitive distraction through lips and eyebrows Azman, Afizan Abdullah, Mohd. Fikri Azli Yogarayan, Sumendra Abdul Razak, Siti Fatimah Muthu, Kalaiarasi Sonai Hani Suhaila Azman, Hartini Cognitive distraction is one of the several contributory factors in road accidents. A number of cognitive distraction detection methods have been developed. One of the most popular methods is based on physiological measurement. Head orientation, gaze rotation, blinking and pupil diameter are among popular physiological parameters that are measured for driver cognitive distraction. In this paper, lips and eyebrows are studied. These new features on human facial expression are obvious and can be easily measured when a person is in cognitive distraction. There are several types of movement on lips and eyebrows that can be captured to indicate cognitive distraction. Correlation and classification techniques are used in this paper for performance measurement and comparison. Real time driving experiment was setup and faceAPI was installed in the car to capture driver's facial expression. Linear regression, support vector machine (SVM), static Bayesian network (SBN) and logistic regression (LR) are used in this study. Results showed that lips and eyebrows are strongly correlated and have a significant role in improving cognitive distraction detection. Dynamic Bayesian network (DBN) with different confidence of levels was also used in this study to classify whether a driver is distracted or not. Institute of Advanced Engineering and Science 2022-02 Article PeerReviewed text en http://eprints.utem.edu.my/id/eprint/26226/2/MEASURING%20DRIVER%20COGNITIVE%20DISTRACTION%20THROUGH%20LIPS%20AND%20EYEBROWS.PDF Azman, Afizan and Abdullah, Mohd. Fikri Azli and Yogarayan, Sumendra and Abdul Razak, Siti Fatimah and Muthu, Kalaiarasi Sonai and Hani Suhaila and Azman, Hartini (2022) Measuring driver cognitive distraction through lips and eyebrows. International Journal of Electrical and Computer Engineering, 12 (1). pp. 756-769. ISSN 2088-8708 https://ijece.iaescore.com/index.php/IJECE/article/view/25522/15382 10.11591/ijece.v12i1.pp756-769 |
institution |
Universiti Teknikal Malaysia Melaka |
building |
UTEM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknikal Malaysia Melaka |
content_source |
UTEM Institutional Repository |
url_provider |
http://eprints.utem.edu.my/ |
language |
English |
description |
Cognitive distraction is one of the several contributory factors in road accidents. A number of cognitive distraction detection methods have been developed. One of the most popular methods is based on physiological measurement. Head orientation, gaze rotation, blinking and pupil diameter are among popular physiological parameters that are measured for driver cognitive distraction. In this paper, lips and eyebrows are studied. These new features on human facial expression are obvious and can be easily measured when a person is in cognitive distraction. There are several types of movement on lips and eyebrows that can be captured to indicate cognitive distraction. Correlation and classification techniques are used in this paper for performance measurement and comparison. Real time driving experiment was setup and faceAPI was installed in the car to capture driver's facial expression. Linear regression, support vector machine (SVM), static Bayesian network (SBN) and logistic regression (LR) are used in this study. Results showed that lips and eyebrows are strongly correlated and have a significant role in improving cognitive distraction detection. Dynamic Bayesian network (DBN) with different confidence of levels was also used in this study to classify whether a driver is distracted or not. |
format |
Article |
author |
Azman, Afizan Abdullah, Mohd. Fikri Azli Yogarayan, Sumendra Abdul Razak, Siti Fatimah Muthu, Kalaiarasi Sonai Hani Suhaila Azman, Hartini |
spellingShingle |
Azman, Afizan Abdullah, Mohd. Fikri Azli Yogarayan, Sumendra Abdul Razak, Siti Fatimah Muthu, Kalaiarasi Sonai Hani Suhaila Azman, Hartini Measuring driver cognitive distraction through lips and eyebrows |
author_facet |
Azman, Afizan Abdullah, Mohd. Fikri Azli Yogarayan, Sumendra Abdul Razak, Siti Fatimah Muthu, Kalaiarasi Sonai Hani Suhaila Azman, Hartini |
author_sort |
Azman, Afizan |
title |
Measuring driver cognitive distraction through lips and eyebrows |
title_short |
Measuring driver cognitive distraction through lips and eyebrows |
title_full |
Measuring driver cognitive distraction through lips and eyebrows |
title_fullStr |
Measuring driver cognitive distraction through lips and eyebrows |
title_full_unstemmed |
Measuring driver cognitive distraction through lips and eyebrows |
title_sort |
measuring driver cognitive distraction through lips and eyebrows |
publisher |
Institute of Advanced Engineering and Science |
publishDate |
2022 |
url |
http://eprints.utem.edu.my/id/eprint/26226/2/MEASURING%20DRIVER%20COGNITIVE%20DISTRACTION%20THROUGH%20LIPS%20AND%20EYEBROWS.PDF http://eprints.utem.edu.my/id/eprint/26226/ https://ijece.iaescore.com/index.php/IJECE/article/view/25522/15382 |
_version_ |
1759693057924530176 |
score |
13.211869 |