Microwave imaging of breast skin utilizing elliptical UWB antenna and reverse problems algorithm
Skin cancer is one of the most widespread and fast growing of all kinds of cancer since it affects the human body easily due to exposure to the Sun’s rays. Microwave imaging has shown better outcomes with higher resolution, faster processing time, mobility, and less cutter and artifact effects. A m...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021
|
Online Access: | http://eprints.utem.edu.my/id/eprint/26133/2/MICROMACHINES2021_R.PDF http://eprints.utem.edu.my/id/eprint/26133/ https://www.mdpi.com/2072-666X/12/6/647 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utem.eprints.26133 |
---|---|
record_format |
eprints |
spelling |
my.utem.eprints.261332023-03-06T09:21:26Z http://eprints.utem.edu.my/id/eprint/26133/ Microwave imaging of breast skin utilizing elliptical UWB antenna and reverse problems algorithm Sameer, Alani Zakaria, Zahriladha Ahmad, Asmala Saeidi, Tale Imran, Muhammad Ali Abbasi, Qammer H. Skin cancer is one of the most widespread and fast growing of all kinds of cancer since it affects the human body easily due to exposure to the Sun’s rays. Microwave imaging has shown better outcomes with higher resolution, faster processing time, mobility, and less cutter and artifact effects. A miniaturized elliptical ultra-wideband (UWB) antenna and its semi-spherical array arrangement were used for signal transmission and reception from the defected locations in the breast skin. Several conditions such as various arrays of three, six, and nine antenna elements, smaller tumor, multi-tumors, and skin on a larger breast sample of 30 cm were considered. To assess the ability of the system, a breast shape container with a diameter of 130 mm and height of 60 mm was 3D printed and then filled with fabricated skin and breast fat to perform the experimental investigation. An improved modified time-reversal algorithm (IMTR) was used to recreate 2D images of tumors with the smallest radius of 1.75 mm in any location within the breast skin. The reconstructed images using both simulated and experimental data verified that the system can be a reliable imaging system for skin cancer diagnosis having a high structural similarity index and resolution. MDPI AG 2021-06 Article PeerReviewed text en http://eprints.utem.edu.my/id/eprint/26133/2/MICROMACHINES2021_R.PDF Sameer, Alani and Zakaria, Zahriladha and Ahmad, Asmala and Saeidi, Tale and Imran, Muhammad Ali and Abbasi, Qammer H. (2021) Microwave imaging of breast skin utilizing elliptical UWB antenna and reverse problems algorithm. Micromachines, 12 (6). pp. 1-17. ISSN 2072-666X https://www.mdpi.com/2072-666X/12/6/647 10.3390/mi12060647 |
institution |
Universiti Teknikal Malaysia Melaka |
building |
UTEM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknikal Malaysia Melaka |
content_source |
UTEM Institutional Repository |
url_provider |
http://eprints.utem.edu.my/ |
language |
English |
description |
Skin cancer is one of the most widespread and fast growing of all kinds of cancer since it affects the human body easily due to exposure to the Sun’s rays. Microwave imaging has shown better outcomes with higher resolution, faster processing time, mobility, and less cutter and artifact effects.
A miniaturized elliptical ultra-wideband (UWB) antenna and its semi-spherical array arrangement were used for signal transmission and reception from the defected locations in the breast skin. Several conditions such as various arrays of three, six, and nine antenna elements, smaller tumor, multi-tumors, and skin on a larger breast sample of 30 cm were considered. To assess the ability of the system, a breast shape container with a diameter of 130 mm and height of 60 mm was 3D printed and then filled with fabricated skin and breast fat to perform the experimental investigation. An improved modified time-reversal algorithm (IMTR) was used to recreate 2D images of tumors with the smallest radius of 1.75 mm in any location within the breast skin. The reconstructed images using both simulated and experimental data verified that the system can be a reliable imaging system for skin cancer diagnosis having a high structural similarity index and resolution. |
format |
Article |
author |
Sameer, Alani Zakaria, Zahriladha Ahmad, Asmala Saeidi, Tale Imran, Muhammad Ali Abbasi, Qammer H. |
spellingShingle |
Sameer, Alani Zakaria, Zahriladha Ahmad, Asmala Saeidi, Tale Imran, Muhammad Ali Abbasi, Qammer H. Microwave imaging of breast skin utilizing elliptical UWB antenna and reverse problems algorithm |
author_facet |
Sameer, Alani Zakaria, Zahriladha Ahmad, Asmala Saeidi, Tale Imran, Muhammad Ali Abbasi, Qammer H. |
author_sort |
Sameer, Alani |
title |
Microwave imaging of breast skin utilizing elliptical UWB antenna and reverse problems algorithm |
title_short |
Microwave imaging of breast skin utilizing elliptical UWB antenna and reverse problems algorithm |
title_full |
Microwave imaging of breast skin utilizing elliptical UWB antenna and reverse problems algorithm |
title_fullStr |
Microwave imaging of breast skin utilizing elliptical UWB antenna and reverse problems algorithm |
title_full_unstemmed |
Microwave imaging of breast skin utilizing elliptical UWB antenna and reverse problems algorithm |
title_sort |
microwave imaging of breast skin utilizing elliptical uwb antenna and reverse problems algorithm |
publisher |
MDPI AG |
publishDate |
2021 |
url |
http://eprints.utem.edu.my/id/eprint/26133/2/MICROMACHINES2021_R.PDF http://eprints.utem.edu.my/id/eprint/26133/ https://www.mdpi.com/2072-666X/12/6/647 |
_version_ |
1759693052764487680 |
score |
13.211869 |