Performance evaluation of online machine learning models based on cyclic dynamic and feature-adaptive time series
Machine learning is becoming an attractive topic for researchers and industrial firms in the area of computational intelligence because of its proven effectiveness and performance in resolving real-world problems. However, some challenges such as precise search, intelligent discovery and intelligent...
保存先:
主要な著者: | Qamar, Faizan, Yu, Keping, Al-Khaleefa, Ahmed Salih, Hassan, Rosilah, Ahmad, Mohd Riduan, Wen, Zheng, Mohd Aman, Azana Hafizah |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Institute of Electronics Information Communication Engineers
2021
|
オンライン・アクセス: | http://eprints.utem.edu.my/id/eprint/25831/2/E104.D_2020BDP0002.PDF http://eprints.utem.edu.my/id/eprint/25831/ https://www.jstage.jst.go.jp/article/transinf/E104.D/8/E104.D_2020BDP0002/_pdf/-char/en |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Feature adaptive and cyclic dynamic learning based on infinite term memory extreme learning machine
著者:: Al-Khaleefa, Ahmed Salih, 等
出版事項: (2019) -
Feature Adaptive and Cyclic Dynamic Learning Based on Infinite Term Memory Extreme Learning Machine
著者:: Al-Khaleefa, Ahmed Salih, 等
出版事項: (2019) -
Decomposition of interacting machining features based on the reasoning on the design features
著者:: Zheng, Yu, 等
出版事項: (2012) -
Wi-Fi Navigation Using Machine Learning With Consideration Of Cyclic Dynamic Behaviour
著者:: Khirbeet, Ahmed Salih
出版事項: (2020) -
Recognition of interacting prismatic features from feature based models
著者:: Yu, Zheng
出版事項: (2010)