Validation Study Of Photovoltaic Thermal Nanofluid Based Coolant Using Computational Fluid Dynamics Approach
In the study, the photovoltaic thermal system using nanofluid as coolant is validated using numerical approach by comparing the experimental results and simulation results. Due to high cost and difficulty in preparing nanofluid, it is more practical to perform the study using numerical approach whic...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Akademia Baru
2021
|
Online Access: | http://eprints.utem.edu.my/id/eprint/25643/2/2945-MANUSCRIPT%20WITH%20AUTHORS%20DETAILS-16986-1-10-20210331.PDF http://eprints.utem.edu.my/id/eprint/25643/ https://www.akademiabaru.com/submit/index.php/cfdl/article/view/2945/2749 https://doi.org/10.37934/cfdl.13.3.5871 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.utem.eprints.25643 |
---|---|
record_format |
eprints |
spelling |
my.utem.eprints.256432022-03-10T15:54:54Z http://eprints.utem.edu.my/id/eprint/25643/ Validation Study Of Photovoltaic Thermal Nanofluid Based Coolant Using Computational Fluid Dynamics Approach Mohd Rosli, Mohd Afzanizam Nawam, Muhammad Zaid Suhaimi, Misha Roslizar, Aiman Abdul Hamid, Nurfaizey Loon, Yew Wai Hussain, Faridah Herawan, Safarudin Gazali Arifin, Zainal In the study, the photovoltaic thermal system using nanofluid as coolant is validated using numerical approach by comparing the experimental results and simulation results. Due to high cost and difficulty in preparing nanofluid, it is more practical to perform the study using numerical approach which is convenient and saves plenty of time. The photovoltaic thermal system is investigated numerically through Computational Fluid Dynamics Approach using Ansys 19.0 Fluent Software. The numerical study is based on different solar irradiation at different hours. The coolant that is selected in the study is aluminum oxide (Al2O3) water nanofluid. The validation study between the experimental results and simulation results are achieved by examining the photovoltaic (PV) surface temperature and nanofluid outlet temperature. The maximum percentage of error between experimental and simulation results of PV surface temperature and nanofluid outlet temperature are 12.66% and 7.89%. Also, the mean average percentage error (MAPE) are computed for PV surface temperature and nanofluid outlet temperature. The results for PV surface temperature and nanofluid outlet temperature are 10.31% and 6.67%. Since the MAPE results are within 10% or error, it proved that there are good accuracy between the simulation and experimental results Penerbit Akademia Baru 2021-03 Article PeerReviewed text en http://eprints.utem.edu.my/id/eprint/25643/2/2945-MANUSCRIPT%20WITH%20AUTHORS%20DETAILS-16986-1-10-20210331.PDF Mohd Rosli, Mohd Afzanizam and Nawam, Muhammad Zaid and Suhaimi, Misha and Roslizar, Aiman and Abdul Hamid, Nurfaizey and Loon, Yew Wai and Hussain, Faridah and Herawan, Safarudin Gazali and Arifin, Zainal (2021) Validation Study Of Photovoltaic Thermal Nanofluid Based Coolant Using Computational Fluid Dynamics Approach. CFD Letters, 13 (3). pp. 58-71. ISSN 2180-1363 https://www.akademiabaru.com/submit/index.php/cfdl/article/view/2945/2749 https://doi.org/10.37934/cfdl.13.3.5871 |
institution |
Universiti Teknikal Malaysia Melaka |
building |
UTEM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Teknikal Malaysia Melaka |
content_source |
UTEM Institutional Repository |
url_provider |
http://eprints.utem.edu.my/ |
language |
English |
description |
In the study, the photovoltaic thermal system using nanofluid as coolant is validated using numerical approach by comparing the experimental results and simulation results. Due to high cost and difficulty in preparing nanofluid, it is more practical to perform the study using numerical approach which is convenient and saves plenty of time. The photovoltaic thermal system is investigated numerically through Computational Fluid Dynamics Approach using Ansys 19.0 Fluent Software. The numerical study is based on different solar irradiation at different hours. The coolant that is selected in the study is aluminum oxide (Al2O3) water nanofluid. The validation study between the experimental results and simulation results are achieved by examining the photovoltaic (PV) surface temperature and nanofluid outlet temperature. The maximum percentage of error between experimental and simulation
results of PV surface temperature and nanofluid outlet temperature are 12.66% and 7.89%. Also, the mean average percentage error (MAPE) are computed for PV surface temperature and nanofluid outlet temperature. The results for PV surface temperature and nanofluid outlet temperature are 10.31% and 6.67%. Since the MAPE results are within 10% or error, it proved that there are good accuracy between the simulation and experimental results |
format |
Article |
author |
Mohd Rosli, Mohd Afzanizam Nawam, Muhammad Zaid Suhaimi, Misha Roslizar, Aiman Abdul Hamid, Nurfaizey Loon, Yew Wai Hussain, Faridah Herawan, Safarudin Gazali Arifin, Zainal |
spellingShingle |
Mohd Rosli, Mohd Afzanizam Nawam, Muhammad Zaid Suhaimi, Misha Roslizar, Aiman Abdul Hamid, Nurfaizey Loon, Yew Wai Hussain, Faridah Herawan, Safarudin Gazali Arifin, Zainal Validation Study Of Photovoltaic Thermal Nanofluid Based Coolant Using Computational Fluid Dynamics Approach |
author_facet |
Mohd Rosli, Mohd Afzanizam Nawam, Muhammad Zaid Suhaimi, Misha Roslizar, Aiman Abdul Hamid, Nurfaizey Loon, Yew Wai Hussain, Faridah Herawan, Safarudin Gazali Arifin, Zainal |
author_sort |
Mohd Rosli, Mohd Afzanizam |
title |
Validation Study Of Photovoltaic Thermal Nanofluid Based Coolant Using Computational Fluid Dynamics Approach |
title_short |
Validation Study Of Photovoltaic Thermal Nanofluid Based Coolant Using Computational Fluid Dynamics Approach |
title_full |
Validation Study Of Photovoltaic Thermal Nanofluid Based Coolant Using Computational Fluid Dynamics Approach |
title_fullStr |
Validation Study Of Photovoltaic Thermal Nanofluid Based Coolant Using Computational Fluid Dynamics Approach |
title_full_unstemmed |
Validation Study Of Photovoltaic Thermal Nanofluid Based Coolant Using Computational Fluid Dynamics Approach |
title_sort |
validation study of photovoltaic thermal nanofluid based coolant using computational fluid dynamics approach |
publisher |
Penerbit Akademia Baru |
publishDate |
2021 |
url |
http://eprints.utem.edu.my/id/eprint/25643/2/2945-MANUSCRIPT%20WITH%20AUTHORS%20DETAILS-16986-1-10-20210331.PDF http://eprints.utem.edu.my/id/eprint/25643/ https://www.akademiabaru.com/submit/index.php/cfdl/article/view/2945/2749 https://doi.org/10.37934/cfdl.13.3.5871 |
_version_ |
1728055204596678656 |
score |
13.211869 |