Potential Of On-The-Go Gamma-Ray Spectrometry For Estimation And Management Of Soil Potassium Site Specifically

High resolution data on plant available potassium (Ka) is crucial to optimize variable rate potassium fertilizer recommendations, and subsequently improve crop growth and yield. A gamma-ray passive spectrometry sensor was evaluated for on-the-go mapping and management of the spatial distribution of...

Full description

Saved in:
Bibliographic Details
Main Authors: Mouazen, Abdul M., Mohamed Kassim, Anuar, Nawar, Said
Format: Article
Language:English
Published: MDPI AG 2021
Online Access:http://eprints.utem.edu.my/id/eprint/25531/2/J%20202101%20SUSTAINABILITY%20SMALL.PDF
http://eprints.utem.edu.my/id/eprint/25531/
https://www.mdpi.com/2071-1050/13/2/661/htm
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High resolution data on plant available potassium (Ka) is crucial to optimize variable rate potassium fertilizer recommendations, and subsequently improve crop growth and yield. A gamma-ray passive spectrometry sensor was evaluated for on-the-go mapping and management of the spatial distribution of Ka over a 8.4 ha field at Huldenberg, Belgium. During the on-the-go measurement, a 5 s sampling interval was used while driving at 3 km/h speed along 10 m parallel transects. Two calibration models to predict Ka across the field were developed and compared: (1) a simple third order polynomial function (3DPF) was established between the sensor reading of the naturally occurring radioactive isotope of potassium (K-40) and laboratory measured Ka and (2) a partial least squares regression (PLSR) model linking gamma-ray spectra and laboratory measured Ka. Although a relatively small number of samples (45 samples) were used for the development of the PLSR calibration model, the cross-validation analysis resulted in a very good performance with a coefficient of determination (R2) of 0.85, a residual prediction deviation (RPD) of 2.67, a root mean square error of cross-validation (RMSECV) of 2.29 (mg/100 g) and a ratio of performance to interquartile distance (RPIQ) of 2.61. This was a much better result that that obtained with the 3DPF model (R2 = 0.69). The spatial distribution of Ka developed based on 3DPF and PLSR methods showed great similarity with the corresponding map developed using the data from the laboratory analysis. The calculated variable rate fertilizer recommendation based on gamma-ray data showed marginal differences in the amount of K2O fertilizer applied, compared to the uniform rate fertilization based on the conventional laboratory chemical soil analyses. The on-the-go measurement of Ka using gamma-ray spectrometry shows high potential, although the technology needs to be evaluated in a larger number of fields