Stress intensity factor for multiple cracks in bonded dissimilar materials using hypersingular integral equations
This paper deals with the multiple inclined or circular arc cracks in the upper half of bonded dissimilar materials subjected to shear stress. Using the complex variable function method, and with the help of the continuity conditions of the traction and displacement, the problem is formulated into t...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Elsevier Inc.
2019
|
الوصول للمادة أونلاين: | http://eprints.utem.edu.my/id/eprint/24339/2/1_AMM%202019.PDF http://eprints.utem.edu.my/id/eprint/24339/ https://reader.elsevier.com/reader/sd/pii/S0307904X19301921?token=A009F45923DA18B40EFA6BDAAE0E1130B79E17ED72389CC39B2B1E9702343A28548B9B36B26E5EC83AC16788A61AE0FE |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | This paper deals with the multiple inclined or circular arc cracks in the upper half of bonded dissimilar materials subjected to shear stress. Using the complex variable function method, and with the help of the continuity conditions of the traction and displacement, the problem is formulated into the hypersingular integral equation (HSIE) with the crack opening displacement function as the unknown and the tractions along the crack as the right term. The obtained HSIE are solved numerically by utilising the appropriate quadrature formulas. Numerical results for multiple inclined or circular arc cracks problems in the upper half of bonded dissimilar materials are presented. It is found that the nondimensional stress intensity factors at the crack tips strongly depends on the elastic constants ratio, crack geometries, the distance between each crack and the distance between the crack and boundary. |
---|