Hydrothermal Carbonisation Of Papaya Peels As Adsorbent For Removal Of Chloramphenicol Compounds
Chloramphenicol (CAP) is an active pharmaceutical ingredient (API) frequently detected in aquatic environments. As a result, continuous exposure to this antibiotic residue brings about adverse effects on human health and aquatic organisms. Recently, among several antibiotic removal technologies from...
Saved in:
Main Author: | |
---|---|
Format: | Monograph |
Language: | English |
Published: |
Universiti Sains Malaysia
2022
|
Subjects: | |
Online Access: | http://eprints.usm.my/55664/1/Hydrothermal%20Carbonisation%20Of%20Papaya%20Peels%20As%20Adsorbent%20For%20Removal%20Of%20Chloramphenicol%20Compounds.pdf http://eprints.usm.my/55664/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.usm.eprints.55664 |
---|---|
record_format |
eprints |
spelling |
my.usm.eprints.55664 http://eprints.usm.my/55664/ Hydrothermal Carbonisation Of Papaya Peels As Adsorbent For Removal Of Chloramphenicol Compounds Teoh, Wei Xin T Technology TP155-156 Chemical engineering Chloramphenicol (CAP) is an active pharmaceutical ingredient (API) frequently detected in aquatic environments. As a result, continuous exposure to this antibiotic residue brings about adverse effects on human health and aquatic organisms. Recently, among several antibiotic removal technologies from water sources, adsorption method has gained the attention of researchers due to its simplicity in design, low preparation cost of activated carbon (AC) and high availability of feedstock from sustainable and renewable biomass waste. Locally, Malaysia’s fruit crop industry takes up the fourth largest land area for plantation purposes. Thus, in this study, the peel waste of papaya, one of Malaysia's most produced non-seasonal tropical fruits, was synthesised into papaya peel-derived activated carbon (PPAC) and tested for batch adsorption of CAP. In the synthesis of PPAC, hydrothermal carbonisation (HTC) was carried out followed by chemical activation via potassium hydroxide (KOH) and microwave heating to enhance its surface area, porosity and functional groups. Microwave power of activation process (364-700 W) and initial CAP concentration (5-100 mg/L) were investigated to study the PPAC adsorption capacity and percentage removal. Based on the experimental data, increased microwave power led to an increase in both adsorption capacity and percentage removal until an optimum value. Adsorption capacity also increased when initial CAP concentration increased owing to the higher driving force generated to overcome mass transfer resistance at higher initial CAP concentration. Maximum adsorption capacity of 22.9958 mg/g and maximum percentage removal of 82.40% were achieved. Moreover, the Langmuir isotherm model and pseudo-second-order kinetic model best fitted the data for CAP removal via PPAC. The findings indicated that PPAC was a promising and potential adsorbent in decontaminating CAP from water sources. Universiti Sains Malaysia 2022-07-01 Monograph NonPeerReviewed application/pdf en http://eprints.usm.my/55664/1/Hydrothermal%20Carbonisation%20Of%20Papaya%20Peels%20As%20Adsorbent%20For%20Removal%20Of%20Chloramphenicol%20Compounds.pdf Teoh, Wei Xin (2022) Hydrothermal Carbonisation Of Papaya Peels As Adsorbent For Removal Of Chloramphenicol Compounds. Project Report. Universiti Sains Malaysia, Pusat Pengajian Kejuruteraan Kimia. (Submitted) |
institution |
Universiti Sains Malaysia |
building |
Hamzah Sendut Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Sains Malaysia |
content_source |
USM Institutional Repository |
url_provider |
http://eprints.usm.my/ |
language |
English |
topic |
T Technology TP155-156 Chemical engineering |
spellingShingle |
T Technology TP155-156 Chemical engineering Teoh, Wei Xin Hydrothermal Carbonisation Of Papaya Peels As Adsorbent For Removal Of Chloramphenicol Compounds |
description |
Chloramphenicol (CAP) is an active pharmaceutical ingredient (API) frequently detected in aquatic environments. As a result, continuous exposure to this antibiotic residue brings about adverse effects on human health and aquatic organisms. Recently, among several antibiotic removal technologies from water sources, adsorption method has gained the attention of researchers due to its simplicity in design, low preparation cost of activated carbon (AC) and high availability of feedstock from sustainable and renewable biomass waste. Locally, Malaysia’s fruit crop industry takes up the fourth largest land area for plantation purposes. Thus, in this study, the peel waste of papaya, one of Malaysia's most produced non-seasonal tropical fruits, was synthesised into papaya peel-derived activated carbon (PPAC) and tested for batch adsorption of CAP. In the synthesis of PPAC, hydrothermal carbonisation (HTC) was carried out followed by chemical activation via potassium hydroxide (KOH) and microwave heating to enhance its surface area, porosity and functional groups. Microwave power of activation process (364-700 W) and initial CAP concentration (5-100 mg/L) were investigated to study the PPAC adsorption capacity and percentage removal. Based on the experimental data, increased microwave power led to an increase in both adsorption capacity and percentage removal until an optimum value. Adsorption capacity also increased when initial CAP concentration increased owing to the higher driving force generated to overcome mass transfer resistance at higher initial CAP concentration. Maximum adsorption capacity of 22.9958 mg/g and maximum percentage removal of 82.40% were achieved. Moreover, the Langmuir isotherm model and pseudo-second-order kinetic model best fitted the data for CAP removal via PPAC. The findings indicated that PPAC was a promising and potential adsorbent in decontaminating CAP from water sources. |
format |
Monograph |
author |
Teoh, Wei Xin |
author_facet |
Teoh, Wei Xin |
author_sort |
Teoh, Wei Xin |
title |
Hydrothermal Carbonisation Of Papaya Peels As Adsorbent For Removal Of Chloramphenicol Compounds |
title_short |
Hydrothermal Carbonisation Of Papaya Peels As Adsorbent For Removal Of Chloramphenicol Compounds |
title_full |
Hydrothermal Carbonisation Of Papaya Peels As Adsorbent For Removal Of Chloramphenicol Compounds |
title_fullStr |
Hydrothermal Carbonisation Of Papaya Peels As Adsorbent For Removal Of Chloramphenicol Compounds |
title_full_unstemmed |
Hydrothermal Carbonisation Of Papaya Peels As Adsorbent For Removal Of Chloramphenicol Compounds |
title_sort |
hydrothermal carbonisation of papaya peels as adsorbent for removal of chloramphenicol compounds |
publisher |
Universiti Sains Malaysia |
publishDate |
2022 |
url |
http://eprints.usm.my/55664/1/Hydrothermal%20Carbonisation%20Of%20Papaya%20Peels%20As%20Adsorbent%20For%20Removal%20Of%20Chloramphenicol%20Compounds.pdf http://eprints.usm.my/55664/ |
_version_ |
1751537257772220416 |
score |
13.211869 |