An Adaptive Switching Cooperative Source Searching And Tracing Algorithms For Underwater Acoustic Source Localization

Swarm robotics is a study of how to organize a relatively large number of simple robots to achieve a robust, flexible and scalable solution for a given task. Searching a source with a complex spatial distribution pattern is one of the possible swarm robotics tasks. In a source searching task, two po...

Full description

Saved in:
Bibliographic Details
Main Author: Majid, Mad Helmi Ab.
Format: Thesis
Language:English
Published: 2019
Subjects:
Online Access:http://eprints.usm.my/51388/1/An%20Adaptive%20Switching%20Cooperative%20Source%20Searching%20And%20Tracing%20Algorithms%20For%20Underwater%20Acoustic%20Source%20Localization.pdf
http://eprints.usm.my/51388/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.usm.eprints.51388
record_format eprints
spelling my.usm.eprints.51388 http://eprints.usm.my/51388/ An Adaptive Switching Cooperative Source Searching And Tracing Algorithms For Underwater Acoustic Source Localization Majid, Mad Helmi Ab. T Technology TK Electrical Engineering. Electronics. Nuclear Engineering Swarm robotics is a study of how to organize a relatively large number of simple robots to achieve a robust, flexible and scalable solution for a given task. Searching a source with a complex spatial distribution pattern is one of the possible swarm robotics tasks. In a source searching task, two possible scenarios can occur: source detected and source not detected. In this study, a complete solution to the two scenarios through an adaptive algorithm switching strategy is explored. Firstly, to detect the source, a Source Detection Algorithm (SDA) known as a Distributed Lévy Flight (DLF) is proposed. To improve exploration performance of the individual agent, a turning angle limit and boundary reflection is introduced in DLF. In order to optimize search space exploration and to maintain inter-robot communication connectivity at swarm level, a dispersion algorithm based on attraction and repulsion force is proposed. Secondly, to trace the source to its approximate location, a Source Tracing Algorithm (STA) known as an Asynchronous Dynamically Adjustable Particle Swarm Optimization (ADAPSO) is suggested. The ADAPSO parameters are adaptively and asynchronously adjusted based on feedback informations to improve convergence speed, to avoid robot trapped into local optima and to minimize target overshooting. In addition, the ADAPSO position update equation is modified to anticipate position adjustment to ensure communication connectivity. To adaptively switches between the two algorithms, an adaptive switching algorithm based on a Generalized Likelihood Ratio Test (GLRT) is proposed. To demonstrate the algorithm switching principle, underwater acoustic source localization using a swarm of Autonomous Surface Vehicles (ASVs) is considered. By considering the ASVs as swarm robotics testing platforms, each algorithm is evaluated and benchmarked against several existing algorithms through simulation studies. The obtained results show that the performance of the DLF for source detection outperformed other benchmark algorithms in term of search space exploration capability and the time taken to detect the source. The ADAPSO for source tracing achieved better tracing performance with better success rate and reduced the time taken to trace the source to its approximate location compared to the benchmark algorithms. Finally, the feasibility of the proposed algorithms for underwater acoustic source localization is confirmed through simulation and experimentation where the achieved average accuracy of source position estimation is 0.4 m and 4.2 m, respectively. 2019-04-01 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/51388/1/An%20Adaptive%20Switching%20Cooperative%20Source%20Searching%20And%20Tracing%20Algorithms%20For%20Underwater%20Acoustic%20Source%20Localization.pdf Majid, Mad Helmi Ab. (2019) An Adaptive Switching Cooperative Source Searching And Tracing Algorithms For Underwater Acoustic Source Localization. PhD thesis, Universiti Sains Malaysia.
institution Universiti Sains Malaysia
building Hamzah Sendut Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Sains Malaysia
content_source USM Institutional Repository
url_provider http://eprints.usm.my/
language English
topic T Technology
TK Electrical Engineering. Electronics. Nuclear Engineering
spellingShingle T Technology
TK Electrical Engineering. Electronics. Nuclear Engineering
Majid, Mad Helmi Ab.
An Adaptive Switching Cooperative Source Searching And Tracing Algorithms For Underwater Acoustic Source Localization
description Swarm robotics is a study of how to organize a relatively large number of simple robots to achieve a robust, flexible and scalable solution for a given task. Searching a source with a complex spatial distribution pattern is one of the possible swarm robotics tasks. In a source searching task, two possible scenarios can occur: source detected and source not detected. In this study, a complete solution to the two scenarios through an adaptive algorithm switching strategy is explored. Firstly, to detect the source, a Source Detection Algorithm (SDA) known as a Distributed Lévy Flight (DLF) is proposed. To improve exploration performance of the individual agent, a turning angle limit and boundary reflection is introduced in DLF. In order to optimize search space exploration and to maintain inter-robot communication connectivity at swarm level, a dispersion algorithm based on attraction and repulsion force is proposed. Secondly, to trace the source to its approximate location, a Source Tracing Algorithm (STA) known as an Asynchronous Dynamically Adjustable Particle Swarm Optimization (ADAPSO) is suggested. The ADAPSO parameters are adaptively and asynchronously adjusted based on feedback informations to improve convergence speed, to avoid robot trapped into local optima and to minimize target overshooting. In addition, the ADAPSO position update equation is modified to anticipate position adjustment to ensure communication connectivity. To adaptively switches between the two algorithms, an adaptive switching algorithm based on a Generalized Likelihood Ratio Test (GLRT) is proposed. To demonstrate the algorithm switching principle, underwater acoustic source localization using a swarm of Autonomous Surface Vehicles (ASVs) is considered. By considering the ASVs as swarm robotics testing platforms, each algorithm is evaluated and benchmarked against several existing algorithms through simulation studies. The obtained results show that the performance of the DLF for source detection outperformed other benchmark algorithms in term of search space exploration capability and the time taken to detect the source. The ADAPSO for source tracing achieved better tracing performance with better success rate and reduced the time taken to trace the source to its approximate location compared to the benchmark algorithms. Finally, the feasibility of the proposed algorithms for underwater acoustic source localization is confirmed through simulation and experimentation where the achieved average accuracy of source position estimation is 0.4 m and 4.2 m, respectively.
format Thesis
author Majid, Mad Helmi Ab.
author_facet Majid, Mad Helmi Ab.
author_sort Majid, Mad Helmi Ab.
title An Adaptive Switching Cooperative Source Searching And Tracing Algorithms For Underwater Acoustic Source Localization
title_short An Adaptive Switching Cooperative Source Searching And Tracing Algorithms For Underwater Acoustic Source Localization
title_full An Adaptive Switching Cooperative Source Searching And Tracing Algorithms For Underwater Acoustic Source Localization
title_fullStr An Adaptive Switching Cooperative Source Searching And Tracing Algorithms For Underwater Acoustic Source Localization
title_full_unstemmed An Adaptive Switching Cooperative Source Searching And Tracing Algorithms For Underwater Acoustic Source Localization
title_sort adaptive switching cooperative source searching and tracing algorithms for underwater acoustic source localization
publishDate 2019
url http://eprints.usm.my/51388/1/An%20Adaptive%20Switching%20Cooperative%20Source%20Searching%20And%20Tracing%20Algorithms%20For%20Underwater%20Acoustic%20Source%20Localization.pdf
http://eprints.usm.my/51388/
_version_ 1724074452722909184
score 13.211869