Dyes Adsorption On Salak Peel Based Activated Carbon Optimization, Equilibrium, Kinetic And Thermodynamic Studies

The adsorption of malachite green (MG) and remazol brilliant blue R (RBBR) dyes onto salak peel activated carbon (SPAC) were investigated in a batch process. Salak peel undergoes physiochemical activation process which involves potassium hydroxide (KOH) impregnation and carbon dioxide (CO2) gasifica...

Full description

Saved in:
Bibliographic Details
Main Author: Zaki, Nur Izzatul Akmal Mohd
Format: Thesis
Language:English
Published: 2015
Subjects:
Online Access:http://eprints.usm.my/45764/1/Dyes%20Adsorption%20On%20Salak%20Peel%20Based%20Activated%20Carbon%20Optimization%2C%20Equilibrium%2C%20Kinetic%20And%20Thermodynamic%20Studies.pdf
http://eprints.usm.my/45764/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The adsorption of malachite green (MG) and remazol brilliant blue R (RBBR) dyes onto salak peel activated carbon (SPAC) were investigated in a batch process. Salak peel undergoes physiochemical activation process which involves potassium hydroxide (KOH) impregnation and carbon dioxide (CO2) gasification. During the preparation of SPAC, the optimum preparation conditions were obtained from response surface methodology (RSM). The optimum conditions are activation temperature, activation time and KOH:char impregnation ratio (IR) with 792°C and 1 hours and 3:1 respectively, which has resulted in 81.74% MG removal, 63.97% RBBR removal and 32.45% SPAC yield. Optimized SPAC has high of surface area (968.32m2/g), pore volume (0.503 cm3/g) and fixed carbon content (79.3%). The pore of SPAC was mesoporous type with average pore diameter of 4.41 nm. The effect of initial dye concentration (100-500 mg/L), contact time (0–24 hours) and solution temperature (30-60oC) were also evaluated through. The obtained equilibrium data for both dyes were best fitted by Langmuir model. Meanwhile, the kinetics data were best represented by the pseudo second-order model for MG and pseudo-first-order model for RBBR. The adsorption process of MG and RBBR onto SPAC were endothermic in nature.