Hydrochemistry Of Groundwater Pollution In The Urban Area Of Khan Younis City, Gaza Strip, Palestine

Groundwater is the only water source for drinking and domestic purposes in Khan Younis city and rainfall is the only source for fresh water recharge. Meanwhile, urbanization increment in last decades leads to groundwater overexploitation and quality highly polluted. The aim of this research is to...

Full description

Saved in:
Bibliographic Details
Main Author: Abujaball, Mohammad S. M.
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:http://eprints.usm.my/45715/1/Hydrochemistry%20Of%20Groundwater%20Pollution%20In%20The%20Urban%20Area%20Of%20Khan%20Younis%20City%2C%20Gaza%20Strip%2C%20Palestine.pdf
http://eprints.usm.my/45715/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.usm.eprints.45715
record_format eprints
spelling my.usm.eprints.45715 http://eprints.usm.my/45715/ Hydrochemistry Of Groundwater Pollution In The Urban Area Of Khan Younis City, Gaza Strip, Palestine Abujaball, Mohammad S. M. T Technology TA1-2040 Engineering (General). Civil engineering (General) Groundwater is the only water source for drinking and domestic purposes in Khan Younis city and rainfall is the only source for fresh water recharge. Meanwhile, urbanization increment in last decades leads to groundwater overexploitation and quality highly polluted. The aim of this research is to explore the groundwater hydrochemical characteristics and mechanisms and hydrochemical processes controls the pollutants in the aquifer, determine mineral saturation states, explore the significance of deuterium versus oxygen18 of the groundwater system and determine the alterations according to groundwater flow direction. For this purpose, 240 groundwater samples from 20 wells were monitored and analyzed for major ionic parameters. While 35 samples analyzed for the isotopes. The result show that, the groundwater is near neutral to weakly alkaline in nature, have electrical conductivity, total dissolved solids, sodium, chlorides and nitrates values more than the maximum acceptable limits for drinking and domestic uses. Meanwhile, the correlation matrix indicates that, the groundwater is originated from a combination of many origins such as natural, mineral dissolution, saline water intrusion and anthropogenic pollution. While the most dominance hydrochemical facie for the water is sodium–chloride–sulfate water type. This water type is hard in nature, has ‘Low to Medium’ water class, unsuitable for drinking and domestic purposes. Calcite, dolomite, gypsum, fluorapatite and fluorite dissolutions and evaporation with ionexchange process are the mechanisms controlling the hydrochemical composition and pollutants enrichment in the groundwater. The isotopic values indicate that isotopes originated from groundwater mixing with rainfall and other water sources, the groundwater recharged from rainfall source and other sources and the area is characterized by semiarid climate. WATEQ4F model simulation shows that calcite and dolomite are in oversaturation states, gypsum and flourite are in undersaturation states and the aquifer is an open system to atmosphere. According to flow direction from east to west there are high impact of saline water intrusion in the east, calcite with dolomite abundance and dissolution in the middle, fluoridebearing minerals abundance and dissolution the east, sewage from cesspits on nitrate and phosphate contamination in the west and finally anthropogenic activities on boron and sulfate contamination in the east. There are minor decreases of in isotopic values from the east to west, indicating aquifer homogeneity. 2017-05 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/45715/1/Hydrochemistry%20Of%20Groundwater%20Pollution%20In%20The%20Urban%20Area%20Of%20Khan%20Younis%20City%2C%20Gaza%20Strip%2C%20Palestine.pdf Abujaball, Mohammad S. M. (2017) Hydrochemistry Of Groundwater Pollution In The Urban Area Of Khan Younis City, Gaza Strip, Palestine. PhD thesis, Universiti Sains Malaysia.
institution Universiti Sains Malaysia
building Hamzah Sendut Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Sains Malaysia
content_source USM Institutional Repository
url_provider http://eprints.usm.my/
language English
topic T Technology
TA1-2040 Engineering (General). Civil engineering (General)
spellingShingle T Technology
TA1-2040 Engineering (General). Civil engineering (General)
Abujaball, Mohammad S. M.
Hydrochemistry Of Groundwater Pollution In The Urban Area Of Khan Younis City, Gaza Strip, Palestine
description Groundwater is the only water source for drinking and domestic purposes in Khan Younis city and rainfall is the only source for fresh water recharge. Meanwhile, urbanization increment in last decades leads to groundwater overexploitation and quality highly polluted. The aim of this research is to explore the groundwater hydrochemical characteristics and mechanisms and hydrochemical processes controls the pollutants in the aquifer, determine mineral saturation states, explore the significance of deuterium versus oxygen18 of the groundwater system and determine the alterations according to groundwater flow direction. For this purpose, 240 groundwater samples from 20 wells were monitored and analyzed for major ionic parameters. While 35 samples analyzed for the isotopes. The result show that, the groundwater is near neutral to weakly alkaline in nature, have electrical conductivity, total dissolved solids, sodium, chlorides and nitrates values more than the maximum acceptable limits for drinking and domestic uses. Meanwhile, the correlation matrix indicates that, the groundwater is originated from a combination of many origins such as natural, mineral dissolution, saline water intrusion and anthropogenic pollution. While the most dominance hydrochemical facie for the water is sodium–chloride–sulfate water type. This water type is hard in nature, has ‘Low to Medium’ water class, unsuitable for drinking and domestic purposes. Calcite, dolomite, gypsum, fluorapatite and fluorite dissolutions and evaporation with ionexchange process are the mechanisms controlling the hydrochemical composition and pollutants enrichment in the groundwater. The isotopic values indicate that isotopes originated from groundwater mixing with rainfall and other water sources, the groundwater recharged from rainfall source and other sources and the area is characterized by semiarid climate. WATEQ4F model simulation shows that calcite and dolomite are in oversaturation states, gypsum and flourite are in undersaturation states and the aquifer is an open system to atmosphere. According to flow direction from east to west there are high impact of saline water intrusion in the east, calcite with dolomite abundance and dissolution in the middle, fluoridebearing minerals abundance and dissolution the east, sewage from cesspits on nitrate and phosphate contamination in the west and finally anthropogenic activities on boron and sulfate contamination in the east. There are minor decreases of in isotopic values from the east to west, indicating aquifer homogeneity.
format Thesis
author Abujaball, Mohammad S. M.
author_facet Abujaball, Mohammad S. M.
author_sort Abujaball, Mohammad S. M.
title Hydrochemistry Of Groundwater Pollution In The Urban Area Of Khan Younis City, Gaza Strip, Palestine
title_short Hydrochemistry Of Groundwater Pollution In The Urban Area Of Khan Younis City, Gaza Strip, Palestine
title_full Hydrochemistry Of Groundwater Pollution In The Urban Area Of Khan Younis City, Gaza Strip, Palestine
title_fullStr Hydrochemistry Of Groundwater Pollution In The Urban Area Of Khan Younis City, Gaza Strip, Palestine
title_full_unstemmed Hydrochemistry Of Groundwater Pollution In The Urban Area Of Khan Younis City, Gaza Strip, Palestine
title_sort hydrochemistry of groundwater pollution in the urban area of khan younis city, gaza strip, palestine
publishDate 2017
url http://eprints.usm.my/45715/1/Hydrochemistry%20Of%20Groundwater%20Pollution%20In%20The%20Urban%20Area%20Of%20Khan%20Younis%20City%2C%20Gaza%20Strip%2C%20Palestine.pdf
http://eprints.usm.my/45715/
_version_ 1717094448349839360
score 13.211869