Harmony search-based fuzzy clustering algorithms for image segmentation.

Algoritma-algoritma pengkelompokan kabur, yang tergolong di dalam kategori pembelajaran mesin tanpa selia, adalah di antara kaedah segmentasi imej yang paling berjaya. Namun demikian, terdapat dua isu utama yang membataskan keberkesanan kaedah ini: kepekaan terhadap pemilihan pusat kelompok permulaa...

詳細記述

保存先:
書誌詳細
第一著者: Alia, Osama Moh’d Radi
フォーマット: 学位論文
言語:English
出版事項: 2011
主題:
オンライン・アクセス:http://eprints.usm.my/42978/1/Pages_from_HARMONY_SEARCH-BASED_FUZZY.pdf
http://eprints.usm.my/42978/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:Algoritma-algoritma pengkelompokan kabur, yang tergolong di dalam kategori pembelajaran mesin tanpa selia, adalah di antara kaedah segmentasi imej yang paling berjaya. Namun demikian, terdapat dua isu utama yang membataskan keberkesanan kaedah ini: kepekaan terhadap pemilihan pusat kelompok permulaan dan ketidakpastian terhadap bilangan kelompok sebenar di dalam set data. Fuzzy clustering algorithms, which fall under unsupervised machine learning, are among the most successful methods for image segmentation. However, two main issues plague these clustering algorithms: initialization sensitivity of cluster centers and unknown number of actual clusters in the given dataset.