Bioactive Proteins Produced By Bacillus Subtilis Atcc 21332 And Lactobacillus Plantarum Atcc 8014 Under Antimicrobial Stress

Many reports indicate that antimicrobial agents or antibiotics at low concentrations are able to activate or repress gene transcription process in bacteria. However, there are still limited studies on the potential of natural antimicrobials at low doses acting as an inducer to trigger biological fun...

Full description

Saved in:
Bibliographic Details
Main Author: Ismatul Nurul Asyikin Binti Ismail
Format: Thesis
Language:English
Published: Universiti Sains Islam Malaysia 2015
Subjects:
Online Access:http://ddms.usim.edu.my/handle/123456789/8494
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.usim-8494
record_format dspace
spelling my.usim-84942017-03-02T07:02:59Z Bioactive Proteins Produced By Bacillus Subtilis Atcc 21332 And Lactobacillus Plantarum Atcc 8014 Under Antimicrobial Stress Ismatul Nurul Asyikin Binti Ismail Etil pentanoat antimikrob semulajadi dan sintetik Allium sativum Sains dan Teknologi Many reports indicate that antimicrobial agents or antibiotics at low concentrations are able to activate or repress gene transcription process in bacteria. However, there are still limited studies on the potential of natural antimicrobials at low doses acting as an inducer to trigger biological functions in bacteria. Therefore, the purpose of this study is to determine the potential of natural and synthetic antimicrobial compounds, which are Allium sativum and ethyl pentanoate at sub-minimal inhibitory concentration (sub-MIC) in inducing proteins production by Bacillus subtilis ATCC 21332 and Lactobacillus plantarum ATCC 8014. SDS-PAGE analysis showed that two extracellular proteins (with approximate size of 51.36 kD and 9.74 kD) were secreted by B. subtilis ATCC 21332 after being enhanced with A. sativum. Meanwhile, L. plantarum ATCC 8014 produced each three (which are 97.83 kD, 53.56 kD and 46.51 kD in size) as well as two (which are 46.51 kD and 6.91 kD in size) new intracellular proteins after being subjected to A. sativum and ethyl pentanoate subsequently. LC-MS/MS analysis presented that 25 proteins were expressed in mild stress condition and have been catalogued into 12 protein functional classes. The extracellular and intracellular proteins each produced by B. subtilis ATCC 21332 and L. plantarum ATCC 8014 revealed antimicrobial activity against selected Gram-positive and Gram-negative bacteria. Both extracellular and intracellular proteins were relatively heat- resistance at 25-30°C and heat-labile at temperature above 30°C. Hence, B. subtilis ATCC 21332 and L. plantarum ATCC 8014 in stressful condition with the presence of either A. sativum or ethyl pentanoate at sub-MIC level were able to induce the production of bioactive proteins with antimicrobial activity. 2015-06-25T02:48:50Z 2015-06-25T02:48:50Z 2013-07 Thesis http://ddms.usim.edu.my/handle/123456789/8494 en Universiti Sains Islam Malaysia
institution Universiti Sains Islam Malaysia
building USIM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universit Sains Islam i Malaysia
content_source USIM Institutional Repository
url_provider http://ddms.usim.edu.my/
language English
topic Etil pentanoat
antimikrob semulajadi dan sintetik
Allium sativum
Sains dan Teknologi
spellingShingle Etil pentanoat
antimikrob semulajadi dan sintetik
Allium sativum
Sains dan Teknologi
Ismatul Nurul Asyikin Binti Ismail
Bioactive Proteins Produced By Bacillus Subtilis Atcc 21332 And Lactobacillus Plantarum Atcc 8014 Under Antimicrobial Stress
description Many reports indicate that antimicrobial agents or antibiotics at low concentrations are able to activate or repress gene transcription process in bacteria. However, there are still limited studies on the potential of natural antimicrobials at low doses acting as an inducer to trigger biological functions in bacteria. Therefore, the purpose of this study is to determine the potential of natural and synthetic antimicrobial compounds, which are Allium sativum and ethyl pentanoate at sub-minimal inhibitory concentration (sub-MIC) in inducing proteins production by Bacillus subtilis ATCC 21332 and Lactobacillus plantarum ATCC 8014. SDS-PAGE analysis showed that two extracellular proteins (with approximate size of 51.36 kD and 9.74 kD) were secreted by B. subtilis ATCC 21332 after being enhanced with A. sativum. Meanwhile, L. plantarum ATCC 8014 produced each three (which are 97.83 kD, 53.56 kD and 46.51 kD in size) as well as two (which are 46.51 kD and 6.91 kD in size) new intracellular proteins after being subjected to A. sativum and ethyl pentanoate subsequently. LC-MS/MS analysis presented that 25 proteins were expressed in mild stress condition and have been catalogued into 12 protein functional classes. The extracellular and intracellular proteins each produced by B. subtilis ATCC 21332 and L. plantarum ATCC 8014 revealed antimicrobial activity against selected Gram-positive and Gram-negative bacteria. Both extracellular and intracellular proteins were relatively heat- resistance at 25-30°C and heat-labile at temperature above 30°C. Hence, B. subtilis ATCC 21332 and L. plantarum ATCC 8014 in stressful condition with the presence of either A. sativum or ethyl pentanoate at sub-MIC level were able to induce the production of bioactive proteins with antimicrobial activity.
format Thesis
author Ismatul Nurul Asyikin Binti Ismail
author_facet Ismatul Nurul Asyikin Binti Ismail
author_sort Ismatul Nurul Asyikin Binti Ismail
title Bioactive Proteins Produced By Bacillus Subtilis Atcc 21332 And Lactobacillus Plantarum Atcc 8014 Under Antimicrobial Stress
title_short Bioactive Proteins Produced By Bacillus Subtilis Atcc 21332 And Lactobacillus Plantarum Atcc 8014 Under Antimicrobial Stress
title_full Bioactive Proteins Produced By Bacillus Subtilis Atcc 21332 And Lactobacillus Plantarum Atcc 8014 Under Antimicrobial Stress
title_fullStr Bioactive Proteins Produced By Bacillus Subtilis Atcc 21332 And Lactobacillus Plantarum Atcc 8014 Under Antimicrobial Stress
title_full_unstemmed Bioactive Proteins Produced By Bacillus Subtilis Atcc 21332 And Lactobacillus Plantarum Atcc 8014 Under Antimicrobial Stress
title_sort bioactive proteins produced by bacillus subtilis atcc 21332 and lactobacillus plantarum atcc 8014 under antimicrobial stress
publisher Universiti Sains Islam Malaysia
publishDate 2015
url http://ddms.usim.edu.my/handle/123456789/8494
_version_ 1645152428419448832
score 13.211869