Deep learning sensor fusion in plant water stress assessment: a comprehensive review

Water stress is one of the major challenges to food security, causing a significant economic loss for the nation as well for growers. Accurate assessment of water stress will enhance agricultural productivity through optimization of plant water usage, maximizing plant breeding strategies, and preven...

Full description

Saved in:
Bibliographic Details
Main Authors: Kamarudin, Mohd Hider, Ismail, Zool Hilmi, Saidi, Noor Baity
Format: Article
Language:English
Published: Multidisciplinary Digital Publishing Institute 2021
Online Access:http://psasir.upm.edu.my/id/eprint/96605/1/ABSTRACT.pdf
http://psasir.upm.edu.my/id/eprint/96605/
https://www.mdpi.com/2076-3417/11/4/1403
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.upm.eprints.96605
record_format eprints
spelling my.upm.eprints.966052023-01-11T06:57:19Z http://psasir.upm.edu.my/id/eprint/96605/ Deep learning sensor fusion in plant water stress assessment: a comprehensive review Kamarudin, Mohd Hider Ismail, Zool Hilmi Saidi, Noor Baity Water stress is one of the major challenges to food security, causing a significant economic loss for the nation as well for growers. Accurate assessment of water stress will enhance agricultural productivity through optimization of plant water usage, maximizing plant breeding strategies, and preventing forest wildfire for better ecosystem management. Recent advancements in sensor technologies have enabled high-throughput, non-contact, and cost-efficient plant water stress assessment through intelligence system modeling. The advanced deep learning sensor fusion technique has been reported to improve the performance of the machine learning application for processing the collected sensory data. This paper extensively reviews the state-of-the-art methods for plant water stress assessment that utilized the deep learning sensor fusion approach in their application, together with future prospects and challenges of the application domain. Notably, 37 deep learning solutions fell under six main areas, namely soil moisture estimation, soil water modelling, evapotranspiration estimation, evapotranspiration forecasting, plant water status estimation and plant water stress identification. Basically, there are eight deep learning solutions compiled for the 3D-dimensional data and plant varieties challenge, including unbalanced data that occurred due to isohydric plants, and the effect of variations that occur within the same species but cultivated from different locations. Multidisciplinary Digital Publishing Institute 2021 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/96605/1/ABSTRACT.pdf Kamarudin, Mohd Hider and Ismail, Zool Hilmi and Saidi, Noor Baity (2021) Deep learning sensor fusion in plant water stress assessment: a comprehensive review. Applied Sciences-Basel, 11 (4). pp. 1-20. ISSN 2076-3417 https://www.mdpi.com/2076-3417/11/4/1403 10.3390/app11041403
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
description Water stress is one of the major challenges to food security, causing a significant economic loss for the nation as well for growers. Accurate assessment of water stress will enhance agricultural productivity through optimization of plant water usage, maximizing plant breeding strategies, and preventing forest wildfire for better ecosystem management. Recent advancements in sensor technologies have enabled high-throughput, non-contact, and cost-efficient plant water stress assessment through intelligence system modeling. The advanced deep learning sensor fusion technique has been reported to improve the performance of the machine learning application for processing the collected sensory data. This paper extensively reviews the state-of-the-art methods for plant water stress assessment that utilized the deep learning sensor fusion approach in their application, together with future prospects and challenges of the application domain. Notably, 37 deep learning solutions fell under six main areas, namely soil moisture estimation, soil water modelling, evapotranspiration estimation, evapotranspiration forecasting, plant water status estimation and plant water stress identification. Basically, there are eight deep learning solutions compiled for the 3D-dimensional data and plant varieties challenge, including unbalanced data that occurred due to isohydric plants, and the effect of variations that occur within the same species but cultivated from different locations.
format Article
author Kamarudin, Mohd Hider
Ismail, Zool Hilmi
Saidi, Noor Baity
spellingShingle Kamarudin, Mohd Hider
Ismail, Zool Hilmi
Saidi, Noor Baity
Deep learning sensor fusion in plant water stress assessment: a comprehensive review
author_facet Kamarudin, Mohd Hider
Ismail, Zool Hilmi
Saidi, Noor Baity
author_sort Kamarudin, Mohd Hider
title Deep learning sensor fusion in plant water stress assessment: a comprehensive review
title_short Deep learning sensor fusion in plant water stress assessment: a comprehensive review
title_full Deep learning sensor fusion in plant water stress assessment: a comprehensive review
title_fullStr Deep learning sensor fusion in plant water stress assessment: a comprehensive review
title_full_unstemmed Deep learning sensor fusion in plant water stress assessment: a comprehensive review
title_sort deep learning sensor fusion in plant water stress assessment: a comprehensive review
publisher Multidisciplinary Digital Publishing Institute
publishDate 2021
url http://psasir.upm.edu.my/id/eprint/96605/1/ABSTRACT.pdf
http://psasir.upm.edu.my/id/eprint/96605/
https://www.mdpi.com/2076-3417/11/4/1403
_version_ 1755873917764894720
score 13.211869