Customer mobile behavioral segmentation and analysis in telecom using machine learning

This study aims to identify telecom customer segments by utilizing machine learning and subsequently develop a web-based dashboard. The dashboard visualizes the cluster analysis based on demographics, behavior, and region features. The study applied analytic pipeline that involved five stages i.e. d...

Full description

Saved in:
Bibliographic Details
Main Authors: Sharaf Addin, Eman Hussein, Admodisastro, Novia Indriaty, Mohd Ashri, Siti Nur Syahirah, Kamaruddin, Azrina, Chew, Yew Chong
Format: Article
Published: Taylor and Francis 2021
Online Access:http://psasir.upm.edu.my/id/eprint/96586/
https://www.tandfonline.com/doi/full/10.1080/08839514.2021.2009223
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to identify telecom customer segments by utilizing machine learning and subsequently develop a web-based dashboard. The dashboard visualizes the cluster analysis based on demographics, behavior, and region features. The study applied analytic pipeline that involved five stages i.e. data generation, data pre-processing, data clustering, clusters analysis, and data visualization. Firstly, the customer’s dataset was generated using Faker Python package. Secondly was the pre-processing which includes the dimensionality reduction of the dataset using the PCA technique and finding the optimal number of clusters using the Elbow method. Unsupervised machine learning algorithm K-means was used to cluster the data, and these results were analyzed and labeled with labels and descriptions. Lastly, a dashboard was developed using Microsoft Power BI to visualize the clustering results in meaningful analysis. According to the results, four customer clusters were obtained. An interactive web-based dashboard called INSIGHT was developed to provide analysis of customer segments based on demographic, behavioral, and regional traits; and to devise customized query for deeper analysis. The correctness of the clustering results was evaluated and achieved a satisfactory Silhouette Score of 0.3853. Hence, the telecom could target their customers accurately based on their needs and preferences to increase service satisfaction.