Structural features with nonnegative matrix factorization for metamorphic malware detection
Metamorphic malware is well known for evading signature-based detection by exploiting various code obfuscation techniques. Current metamorphic malware detection approaches require some prior knowledge during feature engineering stage to extract patterns and behaviors from malware. In this paper, we...
保存先:
主要な著者: | Yeong, Tyng Ling, Mohd Sani, Nor Fazlida, Abdullah, Mohd. Taufik, Abdul Hamid, Nor Asilah Wati |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Elsevier Advanced Technology
2021
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/95181/1/Structural%20features%20with%20nonnegative%20matrix%20factorization%20for%20metamorphic%20malware%20detection.pdf http://psasir.upm.edu.my/id/eprint/95181/ https://www.sciencedirect.com/science/article/pii/S0167404821000407 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
類似資料
-
Nonnegative matrix factorization and metamorphic malware detection
著者:: Ling, Yeong Tyng, 等
出版事項: (2019) -
Nonnegative matrix factorization and metamorphic malware
detection
著者:: Ling, Yeong Tyng, 等
出版事項: (2019) -
Metamorphic malware detection using structural features and nonnegative matrix factorization with hidden markov model
著者:: Ling, Yeong Tyng, 等
出版事項: (2021) -
Metamorphic malware detection using structural features and nonnegative matrix factorization with hidden markov model
著者:: Ling, Yeong Tyng, 等
出版事項: (2021) -
Short review on metamorphic malware detection in Hidden Markov Models
著者:: Yeong, T. Ling, 等
出版事項: (2017)