Multiparametric MRI for the improved diagnostic accuracy of Alzheimer’s disease and mild cognitive impairment: research protocol of a case-control study design

Background: Alzheimer’s disease (AD) is a major neurocognitive disorder identified by memory loss and a significant cognitive decline based on previous level of performance in one or more cognitive domains that interferes in the independence of everyday activities. The accuracy of imaging helps to...

Full description

Saved in:
Bibliographic Details
Main Authors: Dayor Piersson, Albert, Ibrahim, Buhari, Suppiah, Subapriya, Mohamad, Mazlyfarina, Abu Hassan, Hasyma, Omar, Nur Farhayu, Ibrahim, Mohd Izuan, Yusoff, Ahmad Nazlim, Ibrahim, Normala, Saripan, M. Iqbal, Razali, Rizah Mazzuin
Format: Article
Published: Public Library of Science 2021
Online Access:http://psasir.upm.edu.my/id/eprint/94294/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252883
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.upm.eprints.94294
record_format eprints
spelling my.upm.eprints.942942023-05-03T09:03:39Z http://psasir.upm.edu.my/id/eprint/94294/ Multiparametric MRI for the improved diagnostic accuracy of Alzheimer’s disease and mild cognitive impairment: research protocol of a case-control study design Dayor Piersson, Albert Ibrahim, Buhari Suppiah, Subapriya Mohamad, Mazlyfarina Abu Hassan, Hasyma Omar, Nur Farhayu Ibrahim, Mohd Izuan Yusoff, Ahmad Nazlim Ibrahim, Normala Saripan, M. Iqbal Razali, Rizah Mazzuin Background: Alzheimer’s disease (AD) is a major neurocognitive disorder identified by memory loss and a significant cognitive decline based on previous level of performance in one or more cognitive domains that interferes in the independence of everyday activities. The accuracy of imaging helps to identify the neuropathological features that differentiate AD from its common precursor, mild cognitive impairment (MCI). Identification of early signs will aid in risk stratification of disease and ensures proper management is instituted to reduce the morbidity and mortality associated with AD. Magnetic resonance imaging (MRI) using structural MRI (sMRI), functional MRI (fMRI), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy ( 1 H-MRS) performed alone is inadequate. Thus, the combination of multiparametric MRI is proposed to increase the accuracy of diagnosing MCI and AD when compared to elderly healthy controls. Methods: This protocol describes a non-interventional case control study. The AD and MCI patients and the healthy elderly controls will undergo multi-parametric MRI. The protocol consists of sMRI, fMRI, DTI, and single-voxel proton MRS sequences. An eco-planar imaging (EPI) will be used to perform resting-state fMRI sequence. The structural images will be analysed using Computational Anatomy Toolbox-12, functional images will be analysed using Statistical Parametric Mapping-12, DPABI (Data Processing & Analysis for Brain Imaging), and Conn software, while DTI and 1 H-MRS will be analysed using the FSL (FMRIB’s Software Library) and Tarquin respectively. Correlation of the MRI results and the data acquired from the APOE genotyping, neuropsychological evaluations (i.e. Montreal Cognitive Assessment [MoCA], and Mini–Mental State Examination [MMSE] scores) will be performed. The imaging results will also be correlated with the sociodemographic factors. The diagnosis of AD and MCI will be standardized and based on the DSM-5 criteria and the neuropsychological scores. Discussion: The combination of sMRI, fMRI, DTI, and MRS sequences can provide information on the anatomical and functional changes in the brain such as regional grey matter volume atrophy, impaired functional connectivity among brain regions, and decreased metabolite levels specifically at the posterior cingulate cortex/precuneus. The combination of multiparametric MRI sequences can be used to stratify the management of MCI and AD patients. Accurate imaging can decide on the frequency of follow-up at memory clinics and select classifiers for machine learning that may aid in the disease identification and prognostication. Reliable and consistent quantification, using standardised protocols, are crucial to establish an optimal diagnostic capability in the early detection of Alzheimer’s disease. Public Library of Science 2021-09-21 Article PeerReviewed Dayor Piersson, Albert and Ibrahim, Buhari and Suppiah, Subapriya and Mohamad, Mazlyfarina and Abu Hassan, Hasyma and Omar, Nur Farhayu and Ibrahim, Mohd Izuan and Yusoff, Ahmad Nazlim and Ibrahim, Normala and Saripan, M. Iqbal and Razali, Rizah Mazzuin (2021) Multiparametric MRI for the improved diagnostic accuracy of Alzheimer’s disease and mild cognitive impairment: research protocol of a case-control study design. PLoS One, 16 (9). art. no. e0252883. pp. 1-14. ISSN 1932-6203 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252883 10.1371/journal.pone.0252883
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
description Background: Alzheimer’s disease (AD) is a major neurocognitive disorder identified by memory loss and a significant cognitive decline based on previous level of performance in one or more cognitive domains that interferes in the independence of everyday activities. The accuracy of imaging helps to identify the neuropathological features that differentiate AD from its common precursor, mild cognitive impairment (MCI). Identification of early signs will aid in risk stratification of disease and ensures proper management is instituted to reduce the morbidity and mortality associated with AD. Magnetic resonance imaging (MRI) using structural MRI (sMRI), functional MRI (fMRI), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy ( 1 H-MRS) performed alone is inadequate. Thus, the combination of multiparametric MRI is proposed to increase the accuracy of diagnosing MCI and AD when compared to elderly healthy controls. Methods: This protocol describes a non-interventional case control study. The AD and MCI patients and the healthy elderly controls will undergo multi-parametric MRI. The protocol consists of sMRI, fMRI, DTI, and single-voxel proton MRS sequences. An eco-planar imaging (EPI) will be used to perform resting-state fMRI sequence. The structural images will be analysed using Computational Anatomy Toolbox-12, functional images will be analysed using Statistical Parametric Mapping-12, DPABI (Data Processing & Analysis for Brain Imaging), and Conn software, while DTI and 1 H-MRS will be analysed using the FSL (FMRIB’s Software Library) and Tarquin respectively. Correlation of the MRI results and the data acquired from the APOE genotyping, neuropsychological evaluations (i.e. Montreal Cognitive Assessment [MoCA], and Mini–Mental State Examination [MMSE] scores) will be performed. The imaging results will also be correlated with the sociodemographic factors. The diagnosis of AD and MCI will be standardized and based on the DSM-5 criteria and the neuropsychological scores. Discussion: The combination of sMRI, fMRI, DTI, and MRS sequences can provide information on the anatomical and functional changes in the brain such as regional grey matter volume atrophy, impaired functional connectivity among brain regions, and decreased metabolite levels specifically at the posterior cingulate cortex/precuneus. The combination of multiparametric MRI sequences can be used to stratify the management of MCI and AD patients. Accurate imaging can decide on the frequency of follow-up at memory clinics and select classifiers for machine learning that may aid in the disease identification and prognostication. Reliable and consistent quantification, using standardised protocols, are crucial to establish an optimal diagnostic capability in the early detection of Alzheimer’s disease.
format Article
author Dayor Piersson, Albert
Ibrahim, Buhari
Suppiah, Subapriya
Mohamad, Mazlyfarina
Abu Hassan, Hasyma
Omar, Nur Farhayu
Ibrahim, Mohd Izuan
Yusoff, Ahmad Nazlim
Ibrahim, Normala
Saripan, M. Iqbal
Razali, Rizah Mazzuin
spellingShingle Dayor Piersson, Albert
Ibrahim, Buhari
Suppiah, Subapriya
Mohamad, Mazlyfarina
Abu Hassan, Hasyma
Omar, Nur Farhayu
Ibrahim, Mohd Izuan
Yusoff, Ahmad Nazlim
Ibrahim, Normala
Saripan, M. Iqbal
Razali, Rizah Mazzuin
Multiparametric MRI for the improved diagnostic accuracy of Alzheimer’s disease and mild cognitive impairment: research protocol of a case-control study design
author_facet Dayor Piersson, Albert
Ibrahim, Buhari
Suppiah, Subapriya
Mohamad, Mazlyfarina
Abu Hassan, Hasyma
Omar, Nur Farhayu
Ibrahim, Mohd Izuan
Yusoff, Ahmad Nazlim
Ibrahim, Normala
Saripan, M. Iqbal
Razali, Rizah Mazzuin
author_sort Dayor Piersson, Albert
title Multiparametric MRI for the improved diagnostic accuracy of Alzheimer’s disease and mild cognitive impairment: research protocol of a case-control study design
title_short Multiparametric MRI for the improved diagnostic accuracy of Alzheimer’s disease and mild cognitive impairment: research protocol of a case-control study design
title_full Multiparametric MRI for the improved diagnostic accuracy of Alzheimer’s disease and mild cognitive impairment: research protocol of a case-control study design
title_fullStr Multiparametric MRI for the improved diagnostic accuracy of Alzheimer’s disease and mild cognitive impairment: research protocol of a case-control study design
title_full_unstemmed Multiparametric MRI for the improved diagnostic accuracy of Alzheimer’s disease and mild cognitive impairment: research protocol of a case-control study design
title_sort multiparametric mri for the improved diagnostic accuracy of alzheimer’s disease and mild cognitive impairment: research protocol of a case-control study design
publisher Public Library of Science
publishDate 2021
url http://psasir.upm.edu.my/id/eprint/94294/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252883
_version_ 1765298656968179712
score 13.211869