Development of fall detection and activity recognition using threshold based method and neural network
Falls are dangerous and contribute to over 80% of injury-related hospitalization especially amongst the elderly. Hence, fall detection is important for preventing severe injuries and accidental deaths. Meanwhile, recognizing human activity is important for monitoring health status and quality of lif...
محفوظ في:
المؤلفون الرئيسيون: | Sai, Siong Jun, Harun @ Ramli, Hafiz Rashidi, Che Soh, Azura, Kamsani, Noor Ain, Raja Ahmad, Raja Mohd Kamil, Ahmad, Siti Anom, Ishak, Asnor Juraiza |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Institute of Advanced Engineering and Science
2020
|
الوصول للمادة أونلاين: | http://psasir.upm.edu.my/id/eprint/88434/1/ABSTRACT.pdf http://psasir.upm.edu.my/id/eprint/88434/ http://ijeecs.iaescore.com/index.php/IJEECS/article/view/20927 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Development of a wearable human fall detection system
بواسطة: Chua, Kean Hong, وآخرون
منشور في: (2022) -
Investigate the transcendent adapted of wavelet threshold algorithms for elbow movement by surface EMG signal
بواسطة: Ghapanchizadeh, Hossein, وآخرون
منشور في: (2014) -
Development of neural network-based electronic nose for herbs recognition
بواسطة: Che Soh, Azura, وآخرون
منشور في: (2014) -
E-nose herbs recognition system based on artificial neural network technique
بواسطة: Chow, Kar Kit, وآخرون
منشور في: (2013) -
New methodology of online sliding surface slope tuning PID like fuzzy sliding mode controller for robust control of robot manipulators
بواسطة: Yadegar, Sanaz, وآخرون
منشور في: (2016)