A novel hybrid approach for maximizing the extracted photovoltaic power under complex partial shading conditions
The convenient design of a maximum power point tracking (MPPT) controller is key to the success of photovoltaic (PV) system performance in order to maximize the extracted power, which is affected significantly by weather fluctuations, particularly partial shading condition (PSC). This paper proposes...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Multidisciplinary Digital Publishing Institute
2020
|
Online Access: | http://psasir.upm.edu.my/id/eprint/87625/1/ABSTRACT.pdf http://psasir.upm.edu.my/id/eprint/87625/ https://www.mdpi.com/2071-1050/12/14/5786 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.87625 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.876252022-07-06T04:02:47Z http://psasir.upm.edu.my/id/eprint/87625/ A novel hybrid approach for maximizing the extracted photovoltaic power under complex partial shading conditions Mohammad, Altwallbah Neda Mahmod Mohd Radzi, Mohd Amran Azis, Norhafiz Shafie, Suhaidi Mohd Zainuri, Muhammad Ammirrul Atiqi The convenient design of a maximum power point tracking (MPPT) controller is key to the success of photovoltaic (PV) system performance in order to maximize the extracted power, which is affected significantly by weather fluctuations, particularly partial shading condition (PSC). This paper proposes a novel hybrid MPPT approach based on a modified Perturb and Observe (P&O) assisted by the Extremum Seeking Control (ESC) strategy, combining the benefits of these simple algorithms and, meanwhile, eliminating their drawbacks. The proposed algorithm is able to track the maximum possible power under any level of weather fluctuation, with comprehensive enhancement on all aspects of high performance, boosting the PV array efficiency to 100%, reducing the convergence time to less than 100 ms, completely eradicating the oscillations around the achieved power, and maintaining the simplicity levels of both involved strategies. More importantly, this algorithm is applicable for any PV array configuration, which enhances the robustness and novelty of the algorithm. The performance is verified using MATLAB/Simulink. A boost converter is used for controlling DC to DC (direct current to direct current) power. The proposed algorithm’s performance is compared with the conventional P&O and incremental conductance (IC) algorithms under four different cases of weather conditions. The shortcomings of these algorithms are illustrated and the analysis confirms the effectiveness of the proposed algorithm accordingly. Multidisciplinary Digital Publishing Institute 2020 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/87625/1/ABSTRACT.pdf Mohammad, Altwallbah Neda Mahmod and Mohd Radzi, Mohd Amran and Azis, Norhafiz and Shafie, Suhaidi and Mohd Zainuri, Muhammad Ammirrul Atiqi (2020) A novel hybrid approach for maximizing the extracted photovoltaic power under complex partial shading conditions. Sustainability, 12 (14). art. no. 5786. pp. 1-24. ISSN 2071-1050 https://www.mdpi.com/2071-1050/12/14/5786 10.3390/su12145786 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
The convenient design of a maximum power point tracking (MPPT) controller is key to the success of photovoltaic (PV) system performance in order to maximize the extracted power, which is affected significantly by weather fluctuations, particularly partial shading condition (PSC). This paper proposes a novel hybrid MPPT approach based on a modified Perturb and Observe (P&O) assisted by the Extremum Seeking Control (ESC) strategy, combining the benefits of these simple algorithms and, meanwhile, eliminating their drawbacks. The proposed algorithm is able to track the maximum possible power under any level of weather fluctuation, with comprehensive enhancement on all aspects of high performance, boosting the PV array efficiency to 100%, reducing the convergence time to less than 100 ms, completely eradicating the oscillations around the achieved power, and maintaining the simplicity levels of both involved strategies. More importantly, this algorithm is applicable for any PV array configuration, which enhances the robustness and novelty of the algorithm. The performance is verified using MATLAB/Simulink. A boost converter is used for controlling DC to DC (direct current to direct current) power. The proposed algorithm’s performance is compared with the conventional P&O and incremental conductance (IC) algorithms under four different cases of weather conditions. The shortcomings of these algorithms are illustrated and the analysis confirms the effectiveness of the proposed algorithm accordingly. |
format |
Article |
author |
Mohammad, Altwallbah Neda Mahmod Mohd Radzi, Mohd Amran Azis, Norhafiz Shafie, Suhaidi Mohd Zainuri, Muhammad Ammirrul Atiqi |
spellingShingle |
Mohammad, Altwallbah Neda Mahmod Mohd Radzi, Mohd Amran Azis, Norhafiz Shafie, Suhaidi Mohd Zainuri, Muhammad Ammirrul Atiqi A novel hybrid approach for maximizing the extracted photovoltaic power under complex partial shading conditions |
author_facet |
Mohammad, Altwallbah Neda Mahmod Mohd Radzi, Mohd Amran Azis, Norhafiz Shafie, Suhaidi Mohd Zainuri, Muhammad Ammirrul Atiqi |
author_sort |
Mohammad, Altwallbah Neda Mahmod |
title |
A novel hybrid approach for maximizing the extracted photovoltaic power under complex partial shading conditions |
title_short |
A novel hybrid approach for maximizing the extracted photovoltaic power under complex partial shading conditions |
title_full |
A novel hybrid approach for maximizing the extracted photovoltaic power under complex partial shading conditions |
title_fullStr |
A novel hybrid approach for maximizing the extracted photovoltaic power under complex partial shading conditions |
title_full_unstemmed |
A novel hybrid approach for maximizing the extracted photovoltaic power under complex partial shading conditions |
title_sort |
novel hybrid approach for maximizing the extracted photovoltaic power under complex partial shading conditions |
publisher |
Multidisciplinary Digital Publishing Institute |
publishDate |
2020 |
url |
http://psasir.upm.edu.my/id/eprint/87625/1/ABSTRACT.pdf http://psasir.upm.edu.my/id/eprint/87625/ https://www.mdpi.com/2071-1050/12/14/5786 |
_version_ |
1738511961981714432 |
score |
13.211869 |