Microbial biodegradation of paraffin wax in Malaysian crude oil mediated by degradative enzymes
The deposition of paraffin wax in crude oil is a problem faced by the oil and gas industry during extraction, transportation, and refining of crude oil. Most of the commercialized chemical additives to prevent wax are expensive and toxic. As an environmentally friendly alternative, this study aims t...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media
2020
|
Online Access: | http://psasir.upm.edu.my/id/eprint/86747/1/Microbial%20biodegradation%20of%20paraffin%20wax%20in%20Malaysian%20crude%20oil%20mediated%20by%20degradative%20enzymes.pdf http://psasir.upm.edu.my/id/eprint/86747/ https://www.frontiersin.org/articles/10.3389/fmicb.2020.565608/full |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.86747 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.867472021-11-16T02:43:45Z http://psasir.upm.edu.my/id/eprint/86747/ Microbial biodegradation of paraffin wax in Malaysian crude oil mediated by degradative enzymes Adlan, Nur Aina Sabri, Suriana Masomian, Malihe Mohamad Ali, Mohd Shukuri Raja Abdul Rahman, Raja Noor Zaliha The deposition of paraffin wax in crude oil is a problem faced by the oil and gas industry during extraction, transportation, and refining of crude oil. Most of the commercialized chemical additives to prevent wax are expensive and toxic. As an environmentally friendly alternative, this study aims to find a novel thermophilic bacterial strain capable of degrading paraffin wax in crude oil to control wax deposition. To achieve this, the biodegradation of crude oil paraffin wax by 11 bacteria isolated from seawater and oil-contaminated soil samples was investigated at 70°C. The bacteria were identified as Geobacillus kaustophilus N3A7, NFA23, DFY1, Geobacillus jurassicus MK7, Geobacillus thermocatenulatus T7, Parageobacillus caldoxylosilyticus DFY3 and AZ72, Anoxybacillus geothermalis D9, Geobacillus stearothermophilus SA36, AD11, and AD24. The GCMS analysis showed that strains N3A7, MK7, DFY1, AD11, and AD24 achieved more than 70% biodegradation efficiency of crude oil in a short period (3 days). Notably, most of the strains could completely degrade C37–C40 and increase the ratio of C14–C18, especially during the initial 2 days incubation. In addition, the degradation of crude oil also resulted in changes in the pH of the medium. The degradation of crude oil is associated with the production of degradative enzymes such as alkane monooxygenase, alcohol dehydrogenase, lipase, and esterase. Among the 11 strains, the highest activities of alkane monooxygenase were recorded in strain AD24. A comparatively higher overall alcohol dehydrogenase, lipase, and esterase activities were observed in strains N3A7, MK7, DFY1, AD11, and AD24. Thus, there is a potential to use these strains in oil reservoirs, crude oil processing, and recovery to control wax deposition. Their ability to withstand high temperature and produce degradative enzymes for long-chain hydrocarbon degradation led to an increase in the short-chain hydrocarbon ratio, and subsequently, improving the quality of the oil. Frontiers Media 2020-09-08 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/86747/1/Microbial%20biodegradation%20of%20paraffin%20wax%20in%20Malaysian%20crude%20oil%20mediated%20by%20degradative%20enzymes.pdf Adlan, Nur Aina and Sabri, Suriana and Masomian, Malihe and Mohamad Ali, Mohd Shukuri and Raja Abdul Rahman, Raja Noor Zaliha (2020) Microbial biodegradation of paraffin wax in Malaysian crude oil mediated by degradative enzymes. Frontiers in Microbiology, 11. pp. 1-31. ISSN 1664-302X https://www.frontiersin.org/articles/10.3389/fmicb.2020.565608/full 10.3389/fmicb.2020.565608 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
The deposition of paraffin wax in crude oil is a problem faced by the oil and gas industry during extraction, transportation, and refining of crude oil. Most of the commercialized chemical additives to prevent wax are expensive and toxic. As an environmentally friendly alternative, this study aims to find a novel thermophilic bacterial strain capable of degrading paraffin wax in crude oil to control wax deposition. To achieve this, the biodegradation of crude oil paraffin wax by 11 bacteria isolated from seawater and oil-contaminated soil samples was investigated at 70°C. The bacteria were identified as Geobacillus kaustophilus N3A7, NFA23, DFY1, Geobacillus jurassicus MK7, Geobacillus thermocatenulatus T7, Parageobacillus caldoxylosilyticus DFY3 and AZ72, Anoxybacillus geothermalis D9, Geobacillus stearothermophilus SA36, AD11, and AD24. The GCMS analysis showed that strains N3A7, MK7, DFY1, AD11, and AD24 achieved more than 70% biodegradation efficiency of crude oil in a short period (3 days). Notably, most of the strains could completely degrade C37–C40 and increase the ratio of C14–C18, especially during the initial 2 days incubation. In addition, the degradation of crude oil also resulted in changes in the pH of the medium. The degradation of crude oil is associated with the production of degradative enzymes such as alkane monooxygenase, alcohol dehydrogenase, lipase, and esterase. Among the 11 strains, the highest activities of alkane monooxygenase were recorded in strain AD24. A comparatively higher overall alcohol dehydrogenase, lipase, and esterase activities were observed in strains N3A7, MK7, DFY1, AD11, and AD24. Thus, there is a potential to use these strains in oil reservoirs, crude oil processing, and recovery to control wax deposition. Their ability to withstand high temperature and produce degradative enzymes for long-chain hydrocarbon degradation led to an increase in the short-chain hydrocarbon ratio, and subsequently, improving the quality of the oil. |
format |
Article |
author |
Adlan, Nur Aina Sabri, Suriana Masomian, Malihe Mohamad Ali, Mohd Shukuri Raja Abdul Rahman, Raja Noor Zaliha |
spellingShingle |
Adlan, Nur Aina Sabri, Suriana Masomian, Malihe Mohamad Ali, Mohd Shukuri Raja Abdul Rahman, Raja Noor Zaliha Microbial biodegradation of paraffin wax in Malaysian crude oil mediated by degradative enzymes |
author_facet |
Adlan, Nur Aina Sabri, Suriana Masomian, Malihe Mohamad Ali, Mohd Shukuri Raja Abdul Rahman, Raja Noor Zaliha |
author_sort |
Adlan, Nur Aina |
title |
Microbial biodegradation of paraffin wax in Malaysian crude oil mediated by degradative enzymes |
title_short |
Microbial biodegradation of paraffin wax in Malaysian crude oil mediated by degradative enzymes |
title_full |
Microbial biodegradation of paraffin wax in Malaysian crude oil mediated by degradative enzymes |
title_fullStr |
Microbial biodegradation of paraffin wax in Malaysian crude oil mediated by degradative enzymes |
title_full_unstemmed |
Microbial biodegradation of paraffin wax in Malaysian crude oil mediated by degradative enzymes |
title_sort |
microbial biodegradation of paraffin wax in malaysian crude oil mediated by degradative enzymes |
publisher |
Frontiers Media |
publishDate |
2020 |
url |
http://psasir.upm.edu.my/id/eprint/86747/1/Microbial%20biodegradation%20of%20paraffin%20wax%20in%20Malaysian%20crude%20oil%20mediated%20by%20degradative%20enzymes.pdf http://psasir.upm.edu.my/id/eprint/86747/ https://www.frontiersin.org/articles/10.3389/fmicb.2020.565608/full |
_version_ |
1717095385660391424 |
score |
13.211869 |