Covariate-varying threshold selection method in non-stationary generalized pareto model
Non-stationary data usually exist in real life and influenced by covariates. The non-stationary extremes are usually modelled by setting a constant high threshold, u, where the threshold exceedances are modelled by Generalized Pareto distribution (GP). Covariates model is incorporated to the GP par...
保存先:
主要な著者: | Shihabuddin, Afif, Ali, Norhaslinda, Adam, Mohd Bakri |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Academy of Sciences Malaysia
2019
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/81045/1/PARETO.pdf http://psasir.upm.edu.my/id/eprint/81045/ https://www.akademisains.gov.my/asmsj/article/covariate-varying-threshold-selection-method-in-non-stationary-generalized-pareto-model/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Univariate generalized additive models for simulated stationary and non-stationary generalized Pareto distribution
著者:: Behzadi, Mostafa, 等
出版事項: (2017) -
Slice sampler algorithm for generalized pareto distribution
著者:: Rostami, Mohammad, 等
出版事項: (2018) -
Bivariate generalized Pareto distribution for extreme atmospheric particulate matter
著者:: Mohd Amin, Nor Azrita, 等
出版事項: (2014) -
Simulation of left-truncated and case-k interval censored survival data with time-varying covariates
著者:: Manoharan, Thirunanthini, 等
出版事項: (2016) -
Interval estimation for parameters of a bivariate time varying covariate model
著者:: Arasan, Jayanthi
出版事項: (2009)