A new classifier based on combination of genetic programming and support vector machine in solving imbalanced classification problem
In supervised learning, class imbalanced data set is a state where the class distribution is not uniform among the classes. Many classifiers fail to properly identify pattern that belongs to minority class due to most of those classifiers are built in order to minimize error rate. Hence, a biased...
保存先:
第一著者: | Mohd Pozi, Muhammad Syafiq |
---|---|
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2016
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/69313/1/FSKTM%202016%204%20IR.pdf http://psasir.upm.edu.my/id/eprint/69313/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Support vector machine for solving imbalanced dataset problem
著者:: Mohd. Khairuddin, Ismail
出版事項: (2012) -
A new classification model for a class imbalanced data set using genetic programming and support vector machines: case study for wilt disease classification
著者:: Mohd Pozi, Muhammad Syafiq, 等
出版事項: (2015) -
SVGPM: evolving SVM decision function by using genetic programming to solve imbalanced classification problem
著者:: Mohd Pozi, Muhammad Syafiq, 等
出版事項: (2022) -
A probabilistic classifier for imbalanced dataset problems
著者:: Lai, Yee Yang
出版事項: (2012) -
Enhancement of new smooth support vector machines for classification problems
著者:: Santi Wulan, Purnami
出版事項: (2011)