A new classifier based on combination of genetic programming and support vector machine in solving imbalanced classification problem
In supervised learning, class imbalanced data set is a state where the class distribution is not uniform among the classes. Many classifiers fail to properly identify pattern that belongs to minority class due to most of those classifiers are built in order to minimize error rate. Hence, a biased...
Saved in:
主要作者: | Mohd Pozi, Muhammad Syafiq |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2016
|
在線閱讀: | http://psasir.upm.edu.my/id/eprint/69313/1/FSKTM%202016%204%20IR.pdf http://psasir.upm.edu.my/id/eprint/69313/ |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Support vector machine for solving imbalanced dataset problem
由: Mohd. Khairuddin, Ismail
出版: (2012) -
A new classification model for a class imbalanced data set using genetic programming and support vector machines: case study for wilt disease classification
由: Mohd Pozi, Muhammad Syafiq, et al.
出版: (2015) -
SVGPM: evolving SVM decision function by using genetic programming to solve imbalanced classification problem
由: Mohd Pozi, Muhammad Syafiq, et al.
出版: (2022) -
A probabilistic classifier for imbalanced dataset problems
由: Lai, Yee Yang
出版: (2012) -
Enhancement of new smooth support vector machines for classification problems
由: Santi Wulan, Purnami
出版: (2011)