Stepwise regression for kenaf reinforced polypropylene composite

Stepwise regression is an alternative in statistical modelling. This paper discusses the parameters that influence the performance score (PS) of kenaf reinforced polypropylene composite (KRPC). It was found the tensile strength, Young’s modulus and flexural strength are the parameters that influence...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad, Noryani, Salit, Mohd Sapuan, Mohammad Taha, Mastura, Mohamed Yusoff, Mohd Zuhri, Zainudin, Edi Syams
Format: Conference or Workshop Item
Language:English
Published: Centre for Advanced Research on Energy, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka 2018
Online Access:http://psasir.upm.edu.my/id/eprint/65092/1/68-71-1.pdf
http://psasir.upm.edu.my/id/eprint/65092/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.upm.eprints.65092
record_format eprints
spelling my.upm.eprints.650922018-09-03T04:54:30Z http://psasir.upm.edu.my/id/eprint/65092/ Stepwise regression for kenaf reinforced polypropylene composite Muhammad, Noryani Salit, Mohd Sapuan Mohammad Taha, Mastura Mohamed Yusoff, Mohd Zuhri Zainudin, Edi Syams Stepwise regression is an alternative in statistical modelling. This paper discusses the parameters that influence the performance score (PS) of kenaf reinforced polypropylene composite (KRPC). It was found the tensile strength, Young’s modulus and flexural strength are the parameters that influence the materials performance of KRPC. The model adequacy checking was done by plotted the normality and regression probability standardized residual. Centre for Advanced Research on Energy, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka 2018 Conference or Workshop Item PeerReviewed text en http://psasir.upm.edu.my/id/eprint/65092/1/68-71-1.pdf Muhammad, Noryani and Salit, Mohd Sapuan and Mohammad Taha, Mastura and Mohamed Yusoff, Mohd Zuhri and Zainudin, Edi Syams (2018) Stepwise regression for kenaf reinforced polypropylene composite. In: 5th Mechanical Engineering Research Day (MERD'18), 3 May 2018, Kampus Teknologi UTeM, Melaka. (pp. 48-49).
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
description Stepwise regression is an alternative in statistical modelling. This paper discusses the parameters that influence the performance score (PS) of kenaf reinforced polypropylene composite (KRPC). It was found the tensile strength, Young’s modulus and flexural strength are the parameters that influence the materials performance of KRPC. The model adequacy checking was done by plotted the normality and regression probability standardized residual.
format Conference or Workshop Item
author Muhammad, Noryani
Salit, Mohd Sapuan
Mohammad Taha, Mastura
Mohamed Yusoff, Mohd Zuhri
Zainudin, Edi Syams
spellingShingle Muhammad, Noryani
Salit, Mohd Sapuan
Mohammad Taha, Mastura
Mohamed Yusoff, Mohd Zuhri
Zainudin, Edi Syams
Stepwise regression for kenaf reinforced polypropylene composite
author_facet Muhammad, Noryani
Salit, Mohd Sapuan
Mohammad Taha, Mastura
Mohamed Yusoff, Mohd Zuhri
Zainudin, Edi Syams
author_sort Muhammad, Noryani
title Stepwise regression for kenaf reinforced polypropylene composite
title_short Stepwise regression for kenaf reinforced polypropylene composite
title_full Stepwise regression for kenaf reinforced polypropylene composite
title_fullStr Stepwise regression for kenaf reinforced polypropylene composite
title_full_unstemmed Stepwise regression for kenaf reinforced polypropylene composite
title_sort stepwise regression for kenaf reinforced polypropylene composite
publisher Centre for Advanced Research on Energy, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka
publishDate 2018
url http://psasir.upm.edu.my/id/eprint/65092/1/68-71-1.pdf
http://psasir.upm.edu.my/id/eprint/65092/
_version_ 1643838217291563008
score 13.211869