Enhanced handover decision algorithm in heterogeneous wireless network
Transferring a huge amount of data between different network locations over the network links depends on the network's traffic capacity and data rate. Traditionally, a mobile device may be moved to achieve the operations of vertical handover, considering only one criterion, that is the Received...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Multidisciplinary Digital Publishing Institute
2017
|
Online Access: | http://psasir.upm.edu.my/id/eprint/61721/1/Enhanced%20handover%20decision%20algorithm.pdf http://psasir.upm.edu.my/id/eprint/61721/ https://www.mdpi.com/1424-8220/17/7/1626 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transferring a huge amount of data between different network locations over the network links depends on the network's traffic capacity and data rate. Traditionally, a mobile device may be moved to achieve the operations of vertical handover, considering only one criterion, that is the Received Signal Strength (RSS). The use of a single criterion may cause service interruption, an unbalanced network load and an inefficient vertical handover. In this paper, we propose an enhanced vertical handover decision algorithm based on multiple criteria in the heterogeneous wireless network. The algorithm consists of three technology interfaces: Long-Term Evolution (LTE), Worldwide interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN). It also employs three types of vertical handover decision algorithms: equal priority, mobile priority and network priority. The simulation results illustrate that the three types of decision algorithms outperform the traditional network decision algorithm in terms of handover number probability and the handover failure probability. In addition, it is noticed that the network priority handover decision algorithm produces better results compared to the equal priority and the mobile priority handover decision algorithm. Finally, the simulation results are validated by the analytical model. |
---|