Electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method
Investigation on electrical conductivity and dielectric properties of manganese (Mn) and vanadium (V) mixed oxides were carried out to study the extrinsic semiconductor behaviour. The XRD pattern shows that Mn–V oxide is multiphase and quantitative phase analysis was performed to determine the relat...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2016
|
Online Access: | http://psasir.upm.edu.my/id/eprint/57001/1/Electrical%20conductivity%20and%20dielectric%20behaviour%20of%20manganese%20and%20vanadium%20mixed%20oxide%20prepared%20by%20conventional%20solid%20state%20method.pdf http://psasir.upm.edu.my/id/eprint/57001/ http://www.sciencedirect.com/science/article/pii/S2215098616304529#! |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.57001 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.570012017-09-07T03:09:01Z http://psasir.upm.edu.my/id/eprint/57001/ Electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method Tan, Foo Khoon Hassan, Jumiah Abd. Wahab, Zaidan Azis, Raba'ah Syahidah Investigation on electrical conductivity and dielectric properties of manganese (Mn) and vanadium (V) mixed oxides were carried out to study the extrinsic semiconductor behaviour. The XRD pattern shows that Mn–V oxide is multiphase and quantitative phase analysis was performed to determine the relative phases. Overall results indicate that with increasing temperature, the DC conductivity, AC conductivity, dielectric constant, dielectric loss factor and loss tangent of Mn–V mixed oxide increases. Activation energy of AC conduction decreases with increase in frequency, confirms that the hopping conduction is the dominant mechanism. The activation energy of DC conduction ΔEdc is 0.54 eV which is greater than ΔEdc. There are three types of dielectric constant spectrum found in the measuring temperature range 30–250 °C. This is possibly due to the extrinsic behaviour of the Mn–V oxide. Dielectric relaxation characteristic was obtained from the spectrum of the imaginary part of electric modulus. The activation energy of the relaxation process and the relaxation time at infinite temperature are 0.42 eV and 5.40 ps respectively. The Nyquist plot of complex impedance fitted the equivalent circuit model of two RC circuits in series with R and C in parallel. The relaxation time was estimated from the circuit model. Elsevier 2016 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/57001/1/Electrical%20conductivity%20and%20dielectric%20behaviour%20of%20manganese%20and%20vanadium%20mixed%20oxide%20prepared%20by%20conventional%20solid%20state%20method.pdf Tan, Foo Khoon and Hassan, Jumiah and Abd. Wahab, Zaidan and Azis, Raba'ah Syahidah (2016) Electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method. Engineering Science and Technology, an International Journal, 19 (4). pp. 2081-2087. ISSN 2215-0986 http://www.sciencedirect.com/science/article/pii/S2215098616304529#! 10.1016/j.jestch.2016.08.002 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
Investigation on electrical conductivity and dielectric properties of manganese (Mn) and vanadium (V) mixed oxides were carried out to study the extrinsic semiconductor behaviour. The XRD pattern shows that Mn–V oxide is multiphase and quantitative phase analysis was performed to determine the relative phases. Overall results indicate that with increasing temperature, the DC conductivity, AC conductivity, dielectric constant, dielectric loss factor and loss tangent of Mn–V mixed oxide increases. Activation energy of AC conduction decreases with increase in frequency, confirms that the hopping conduction is the dominant mechanism. The activation energy of DC conduction ΔEdc is 0.54 eV which is greater than ΔEdc. There are three types of dielectric constant spectrum found in the measuring temperature range 30–250 °C. This is possibly due to the extrinsic behaviour of the Mn–V oxide. Dielectric relaxation characteristic was obtained from the spectrum of the imaginary part of electric modulus. The activation energy of the relaxation process and the relaxation time at infinite temperature are 0.42 eV and 5.40 ps respectively. The Nyquist plot of complex impedance fitted the equivalent circuit model of two RC circuits in series with R and C in parallel. The relaxation time was estimated from the circuit model. |
format |
Article |
author |
Tan, Foo Khoon Hassan, Jumiah Abd. Wahab, Zaidan Azis, Raba'ah Syahidah |
spellingShingle |
Tan, Foo Khoon Hassan, Jumiah Abd. Wahab, Zaidan Azis, Raba'ah Syahidah Electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method |
author_facet |
Tan, Foo Khoon Hassan, Jumiah Abd. Wahab, Zaidan Azis, Raba'ah Syahidah |
author_sort |
Tan, Foo Khoon |
title |
Electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method |
title_short |
Electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method |
title_full |
Electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method |
title_fullStr |
Electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method |
title_full_unstemmed |
Electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method |
title_sort |
electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method |
publisher |
Elsevier |
publishDate |
2016 |
url |
http://psasir.upm.edu.my/id/eprint/57001/1/Electrical%20conductivity%20and%20dielectric%20behaviour%20of%20manganese%20and%20vanadium%20mixed%20oxide%20prepared%20by%20conventional%20solid%20state%20method.pdf http://psasir.upm.edu.my/id/eprint/57001/ http://www.sciencedirect.com/science/article/pii/S2215098616304529#! |
_version_ |
1643836357501517824 |
score |
13.211869 |