Multi pursuer differential game of optimal approach with integral constraints on controls of players

We study a differential game of optimal approach of finite or countable number of pursuers with one evader in the Hilbert space l2. On control functions of the players integral constraints are imposed. Such constraints arise in modeling the constraint on energy. The duration of the game θ is fixed....

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ibragimov, Gafurjan, Abd Rasid, Norshakila, Kuchkarov, Atamurat Shamuratovich, Ismail, Fudziah
التنسيق: مقال
اللغة:English
منشور في: Mathematical Society of the Republic of China (Taiwan) 2015
الوصول للمادة أونلاين:http://psasir.upm.edu.my/id/eprint/56547/1/Multi%20pursuer%20differential%20game%20of%20optimal%20approach%20with%20integral%20constraints%20on%20controls%20of%20players.pdf
http://psasir.upm.edu.my/id/eprint/56547/
http://projecteuclid.org/euclid.twjm/1499133673
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:We study a differential game of optimal approach of finite or countable number of pursuers with one evader in the Hilbert space l2. On control functions of the players integral constraints are imposed. Such constraints arise in modeling the constraint on energy. The duration of the game θ is fixed. The payoff functional is the greatest lower bound of distances between the pursuers and evader when the game is terminated. The pursuers try to minimize the payoff functional, and the evader tries to maximize it. In this paper, we find formula for the value of the game and construct explicitly optimal strategies of the players. Important point to note is that the energy resource of any pursuer needs not be greater than that of the evader.