Effect of variation sintering temperature on magnetic permeability and grain sizes of Y3Fe5O12 via mechanical alloying technique
This work will focus on the preparation of yttrium iron garnet (Y3Fe5O12, YIG) via mechanical alloying technique derive by steel waste product. The Fe2O3 powder derived from the steel waste purified by using magnetic and non-magnetic particles (MNM) and Curie temperature separation (CTS) technique....
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Trans Tech Publications
2016
|
Online Access: | http://psasir.upm.edu.my/id/eprint/54062/1/Effect%20of%20variation%20sintering%20temperature%20on%20magnetic%20permeability%20and%20grain%20sizes%20.pdf http://psasir.upm.edu.my/id/eprint/54062/ https://www.scientific.net/MSF.846.395 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.54062 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.540622018-02-27T03:40:38Z http://psasir.upm.edu.my/id/eprint/54062/ Effect of variation sintering temperature on magnetic permeability and grain sizes of Y3Fe5O12 via mechanical alloying technique Mohd Shahrani, Nuraine Mariana Azis, Raba’ah Syahidah Hashim, Mansor Hassan, Jumiah Zakaria, Azmi Daud, Noruzaman This work will focus on the preparation of yttrium iron garnet (Y3Fe5O12, YIG) via mechanical alloying technique derive by steel waste product. The Fe2O3 powder derived from the steel waste purified by using magnetic and non-magnetic particles (MNM) and Curie temperature separation (CTS) technique. The purified powder was then oxidized in air at 500 °C for 9 hours in air. The Fe2O3 was mixed with Y2O3 using high energy ball milling for 9 hours. The mixed powder obtained was pressed and sintered at different temperature 500/600/700/800/900/1000/1100 °C. X-ray diffraction (XRD) shows the YIG is completely form at 1100 °C. The field emission scanning electron microscopy (FESEM) images shows the grain size increases as increase the sintering temperatures. The frequency dependence on the complex permeability, µ’ and magnetic loss, µ’’ in the frequency range 10 MHz to 1 GHz were measured in this study. The results showed that the highest μ΄ is 5.890 obtained from 1100 °C. Trans Tech Publications 2016 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/54062/1/Effect%20of%20variation%20sintering%20temperature%20on%20magnetic%20permeability%20and%20grain%20sizes%20.pdf Mohd Shahrani, Nuraine Mariana and Azis, Raba’ah Syahidah and Hashim, Mansor and Hassan, Jumiah and Zakaria, Azmi and Daud, Noruzaman (2016) Effect of variation sintering temperature on magnetic permeability and grain sizes of Y3Fe5O12 via mechanical alloying technique. Materials Science Forum, 846. pp. 395-402. ISSN 0255-5476; ESSN: 1662-9752 https://www.scientific.net/MSF.846.395 10.4028/www.scientific.net/MSF.846.395 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
This work will focus on the preparation of yttrium iron garnet (Y3Fe5O12, YIG) via mechanical alloying technique derive by steel waste product. The Fe2O3 powder derived from the steel waste purified by using magnetic and non-magnetic particles (MNM) and Curie temperature separation (CTS) technique. The purified powder was then oxidized in air at 500 °C for 9 hours in air. The Fe2O3 was mixed with Y2O3 using high energy ball milling for 9 hours. The mixed powder obtained was pressed and sintered at different temperature 500/600/700/800/900/1000/1100 °C. X-ray diffraction (XRD) shows the YIG is completely form at 1100 °C. The field emission scanning electron microscopy (FESEM) images shows the grain size increases as increase the sintering temperatures. The frequency dependence on the complex permeability, µ’ and magnetic loss, µ’’ in the frequency range 10 MHz to 1 GHz were measured in this study. The results showed that the highest μ΄ is 5.890 obtained from 1100 °C. |
format |
Article |
author |
Mohd Shahrani, Nuraine Mariana Azis, Raba’ah Syahidah Hashim, Mansor Hassan, Jumiah Zakaria, Azmi Daud, Noruzaman |
spellingShingle |
Mohd Shahrani, Nuraine Mariana Azis, Raba’ah Syahidah Hashim, Mansor Hassan, Jumiah Zakaria, Azmi Daud, Noruzaman Effect of variation sintering temperature on magnetic permeability and grain sizes of Y3Fe5O12 via mechanical alloying technique |
author_facet |
Mohd Shahrani, Nuraine Mariana Azis, Raba’ah Syahidah Hashim, Mansor Hassan, Jumiah Zakaria, Azmi Daud, Noruzaman |
author_sort |
Mohd Shahrani, Nuraine Mariana |
title |
Effect of variation sintering temperature on magnetic permeability and grain sizes of Y3Fe5O12 via mechanical alloying technique |
title_short |
Effect of variation sintering temperature on magnetic permeability and grain sizes of Y3Fe5O12 via mechanical alloying technique |
title_full |
Effect of variation sintering temperature on magnetic permeability and grain sizes of Y3Fe5O12 via mechanical alloying technique |
title_fullStr |
Effect of variation sintering temperature on magnetic permeability and grain sizes of Y3Fe5O12 via mechanical alloying technique |
title_full_unstemmed |
Effect of variation sintering temperature on magnetic permeability and grain sizes of Y3Fe5O12 via mechanical alloying technique |
title_sort |
effect of variation sintering temperature on magnetic permeability and grain sizes of y3fe5o12 via mechanical alloying technique |
publisher |
Trans Tech Publications |
publishDate |
2016 |
url |
http://psasir.upm.edu.my/id/eprint/54062/1/Effect%20of%20variation%20sintering%20temperature%20on%20magnetic%20permeability%20and%20grain%20sizes%20.pdf http://psasir.upm.edu.my/id/eprint/54062/ https://www.scientific.net/MSF.846.395 |
_version_ |
1643835554536620032 |
score |
13.211869 |