Runge-Kutta Methods for Solving Ordinary and Delay Differential Equations

An introduction to Runge-Kutta methods for the solution of ordinary differential equations (ODEs) is introduced. The technique of using Singly Diagonally Implicit Runge-Kutta (SDIRK) method for the integration of stiff and non-stiff ODEs has been widely accepted, this is because SDIRK method is comp...

Full description

Saved in:
Bibliographic Details
Main Author: Alkhasawneh, Rae’d Ali Ahmed
Format: Thesis
Language:English
English
Published: 2006
Online Access:http://psasir.upm.edu.my/id/eprint/4977/1/FS_2006_63.pdf
http://psasir.upm.edu.my/id/eprint/4977/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.upm.eprints.4977
record_format eprints
spelling my.upm.eprints.49772013-05-27T07:19:31Z http://psasir.upm.edu.my/id/eprint/4977/ Runge-Kutta Methods for Solving Ordinary and Delay Differential Equations Alkhasawneh, Rae’d Ali Ahmed An introduction to Runge-Kutta methods for the solution of ordinary differential equations (ODEs) is introduced. The technique of using Singly Diagonally Implicit Runge-Kutta (SDIRK) method for the integration of stiff and non-stiff ODEs has been widely accepted, this is because SDIRK method is computationally efficient and stiffly stable. Consequently embedded SDIRK method of fourth-order six stage in fifth-order seven stage which has the property that the first row of the coefficient matrix is equal to zero and the last row of the coefficient matrix is equal to the vector output value is constructed. The stability region of the method when applied to linear ODE is given. Numerical results when stiff and non-stiff first order ODEs are solved using the method are tabulated and compared with the method in current use. Introduction to delay differential equations (DDEs) and the areas where they arise are given. A brief discussion on Runge-Kutta method when adapted to delay differential equation is introduced. SDIRK method which has been derived previously is used to solve delay differential equations; the delay term is approximated using divided difference interpolation. Numerical results are tabulated and compared with the existing methods. The stability aspects of SDIRK method when applied to DDEs using Lagrange interpolation are investigated and the region of stability is presented. Runge-Kutta-Nystróm (RKN) method for the solution of special second-order ordinary differential equations of the form ),(yxfy=′′ is discussed. Consequently, Singly Diagonally Implicit Runge-Kutta Nystróm (SDIRKN) method of third-order three stage embedded in fourth-order four stage with small error coefficients is constructed. The stability region of the new method is presented. The method is then used to solve both stiff and non-stiff special second order ODEs and the numerical results suggest that the new method is more efficient compared to the current methods in use. Finally, introduction to general Runge-Kutta-Nystrom (RKNG) method for the solution of second-order ordinary differential equations of the form ),,(yyxfy′=′′ is given. A new embedded Singly Diagonally Implicit Runge-Kutta-Nystróm General (SDIRKNG) method of third-order four stage embedded in fourth-order five stage is derived. Analysis on the stability aspects of the new method is given and numerical results when the method is used to solve both stiff and non-stiff second order ODEs are presented. The results indicate the superiority of the new method compared to the existing method. 2006 Thesis NonPeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/4977/1/FS_2006_63.pdf Alkhasawneh, Rae’d Ali Ahmed (2006) Runge-Kutta Methods for Solving Ordinary and Delay Differential Equations. PhD thesis, Universiti Putra Malaysia. English
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
English
description An introduction to Runge-Kutta methods for the solution of ordinary differential equations (ODEs) is introduced. The technique of using Singly Diagonally Implicit Runge-Kutta (SDIRK) method for the integration of stiff and non-stiff ODEs has been widely accepted, this is because SDIRK method is computationally efficient and stiffly stable. Consequently embedded SDIRK method of fourth-order six stage in fifth-order seven stage which has the property that the first row of the coefficient matrix is equal to zero and the last row of the coefficient matrix is equal to the vector output value is constructed. The stability region of the method when applied to linear ODE is given. Numerical results when stiff and non-stiff first order ODEs are solved using the method are tabulated and compared with the method in current use. Introduction to delay differential equations (DDEs) and the areas where they arise are given. A brief discussion on Runge-Kutta method when adapted to delay differential equation is introduced. SDIRK method which has been derived previously is used to solve delay differential equations; the delay term is approximated using divided difference interpolation. Numerical results are tabulated and compared with the existing methods. The stability aspects of SDIRK method when applied to DDEs using Lagrange interpolation are investigated and the region of stability is presented. Runge-Kutta-Nystróm (RKN) method for the solution of special second-order ordinary differential equations of the form ),(yxfy=′′ is discussed. Consequently, Singly Diagonally Implicit Runge-Kutta Nystróm (SDIRKN) method of third-order three stage embedded in fourth-order four stage with small error coefficients is constructed. The stability region of the new method is presented. The method is then used to solve both stiff and non-stiff special second order ODEs and the numerical results suggest that the new method is more efficient compared to the current methods in use. Finally, introduction to general Runge-Kutta-Nystrom (RKNG) method for the solution of second-order ordinary differential equations of the form ),,(yyxfy′=′′ is given. A new embedded Singly Diagonally Implicit Runge-Kutta-Nystróm General (SDIRKNG) method of third-order four stage embedded in fourth-order five stage is derived. Analysis on the stability aspects of the new method is given and numerical results when the method is used to solve both stiff and non-stiff second order ODEs are presented. The results indicate the superiority of the new method compared to the existing method.
format Thesis
author Alkhasawneh, Rae’d Ali Ahmed
spellingShingle Alkhasawneh, Rae’d Ali Ahmed
Runge-Kutta Methods for Solving Ordinary and Delay Differential Equations
author_facet Alkhasawneh, Rae’d Ali Ahmed
author_sort Alkhasawneh, Rae’d Ali Ahmed
title Runge-Kutta Methods for Solving Ordinary and Delay Differential Equations
title_short Runge-Kutta Methods for Solving Ordinary and Delay Differential Equations
title_full Runge-Kutta Methods for Solving Ordinary and Delay Differential Equations
title_fullStr Runge-Kutta Methods for Solving Ordinary and Delay Differential Equations
title_full_unstemmed Runge-Kutta Methods for Solving Ordinary and Delay Differential Equations
title_sort runge-kutta methods for solving ordinary and delay differential equations
publishDate 2006
url http://psasir.upm.edu.my/id/eprint/4977/1/FS_2006_63.pdf
http://psasir.upm.edu.my/id/eprint/4977/
_version_ 1643823054053179392
score 13.211869