Traffic signal control based on adaptive neural-fuzzy inference system applied to intersection
Adaptive Neural-Fuzzy Inference System (ANFIS) that integrates the best features of fuzzy systems and neural networks has been widely applied in many areas. It can be applied to synthesize controllers, which are able to tune the fuzzy control system automatically, and models that learn from past dat...
保存先:
主要な著者: | Che Soh, Azura, Abdul Rahman, Ribhan Zafira, Lai, Ghuan Rhung, Md. Sarkan, Haslina |
---|---|
フォーマット: | Conference or Workshop Item |
言語: | English |
出版事項: |
IEEE
2011
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/47696/1/Traffic%20signal%20control%20based%20on%20adaptive%20neural-fuzzy%20inference%20system%20applied%20to%20intersection.pdf http://psasir.upm.edu.my/id/eprint/47696/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Controlling traffic flow in multilane-isolated intersection using ANFIS approach techniques
著者:: Lai, Ghuan Rhung, 等
出版事項: (2015) -
Fuzzy traffic light controller using Sugeno method for isolated intersection
著者:: Lai, Guan Rhung, 等
出版事項: (2009) -
MATLAB simulation of fuzzy traffic controller for multilane isolated intersection.
著者:: Che Soh, Azura, 等
出版事項: (2010) -
Intelligent control of twin-rotor MIMO system using fuzzy inference techniques
著者:: Che Soh, Azura, 等
出版事項: (2013) -
Intelligent traffic signal control system based on fuzzy approach technique for multilane-multiple intersection
著者:: Che Soh, Azura
出版事項: (2011)