Improvement of ear recognition rate using color scale invariant feature transform

Local features are effective for ear biometrics. Scale Invariant Feature Transform (SIFT) technique has been used in many biometrics types as well as ear, but it is suitable for gray-scale images. In addition, the number of keypoints which can be retrieved by SIFT has an upper limit. This researc...

Full description

Saved in:
Bibliographic Details
Main Author: Hadidi, Komeil
Format: Thesis
Language:English
Published: 2013
Online Access:http://psasir.upm.edu.my/id/eprint/47567/1/FK%202013%2040R.pdf
http://psasir.upm.edu.my/id/eprint/47567/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.upm.eprints.47567
record_format eprints
spelling my.upm.eprints.475672016-07-22T01:07:41Z http://psasir.upm.edu.my/id/eprint/47567/ Improvement of ear recognition rate using color scale invariant feature transform Hadidi, Komeil Local features are effective for ear biometrics. Scale Invariant Feature Transform (SIFT) technique has been used in many biometrics types as well as ear, but it is suitable for gray-scale images. In addition, the number of keypoints which can be retrieved by SIFT has an upper limit. This research is aimed to develop a method for using color information (in addition to gray images) to generate additional feature points for higher recognition rate. SIFT has four stages. The first stage of SIFT, which is applying difference of Gaussian function on the image, has been changed such that the resulting key-points will be generated from a pair of RGB color planes. This structure is inspired by color double opponent neuronal circuits in the primate brains. In the last stage of SIFT, the gray and color features will be compared against gray and color database, respectively. The scores of all active color channels will then be added together to produce final score of database images to win as a matching image. The proposed approach is compared with standard model of SIFT by applying both of them on USTB database of ears with 780 side view ear images from several viewpoints up to 20 degrees difference. Comparison among standard and different color opponent channels demonstrates that 4.3% higher recognition rate has been achieved by utilizing Red/Green opponent channel, in addition to the gray channel, for 20 degrees rotation in viewpoint. For Yellow/Blue channel, the improvement is 6% in maximum rotation of the head. Comparative analysis demonstrates that the proposed method can achieve higher recognition rate by utilizing color image information. 2013-01 Thesis NonPeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/47567/1/FK%202013%2040R.pdf Hadidi, Komeil (2013) Improvement of ear recognition rate using color scale invariant feature transform. Masters thesis, Universiti Putra Malaysia.
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
description Local features are effective for ear biometrics. Scale Invariant Feature Transform (SIFT) technique has been used in many biometrics types as well as ear, but it is suitable for gray-scale images. In addition, the number of keypoints which can be retrieved by SIFT has an upper limit. This research is aimed to develop a method for using color information (in addition to gray images) to generate additional feature points for higher recognition rate. SIFT has four stages. The first stage of SIFT, which is applying difference of Gaussian function on the image, has been changed such that the resulting key-points will be generated from a pair of RGB color planes. This structure is inspired by color double opponent neuronal circuits in the primate brains. In the last stage of SIFT, the gray and color features will be compared against gray and color database, respectively. The scores of all active color channels will then be added together to produce final score of database images to win as a matching image. The proposed approach is compared with standard model of SIFT by applying both of them on USTB database of ears with 780 side view ear images from several viewpoints up to 20 degrees difference. Comparison among standard and different color opponent channels demonstrates that 4.3% higher recognition rate has been achieved by utilizing Red/Green opponent channel, in addition to the gray channel, for 20 degrees rotation in viewpoint. For Yellow/Blue channel, the improvement is 6% in maximum rotation of the head. Comparative analysis demonstrates that the proposed method can achieve higher recognition rate by utilizing color image information.
format Thesis
author Hadidi, Komeil
spellingShingle Hadidi, Komeil
Improvement of ear recognition rate using color scale invariant feature transform
author_facet Hadidi, Komeil
author_sort Hadidi, Komeil
title Improvement of ear recognition rate using color scale invariant feature transform
title_short Improvement of ear recognition rate using color scale invariant feature transform
title_full Improvement of ear recognition rate using color scale invariant feature transform
title_fullStr Improvement of ear recognition rate using color scale invariant feature transform
title_full_unstemmed Improvement of ear recognition rate using color scale invariant feature transform
title_sort improvement of ear recognition rate using color scale invariant feature transform
publishDate 2013
url http://psasir.upm.edu.my/id/eprint/47567/1/FK%202013%2040R.pdf
http://psasir.upm.edu.my/id/eprint/47567/
_version_ 1643833916810854400
score 13.211869