Maximizing urban features extraction from multi-sensor data with Dempster-Shafer theory and HSI data fusion techniques
This paper compares two multi-sensor data fusion techniques – Dempster-Sharfer Theory (DST) and Hue Saturation Intensity (HSI). The objective is to evaluate the effectiveness of the methods interm in space and time and quality of information extraction. LiDAR and hyperspectral data were fused using...
Saved in:
Main Authors: | Idrees, Mohammed Oludare, Saeidi, Vahideh, Pradhan, Biswajeet, Mohd Shafri, Helmi Zulhaidi |
---|---|
格式: | Article |
語言: | English |
出版: |
Asian Online Journals
2015
|
在線閱讀: | http://psasir.upm.edu.my/id/eprint/45421/1/LIDAR.pdf http://psasir.upm.edu.my/id/eprint/45421/ https://ajouronline.com/index.php/AJAS/article/view/2320 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Fusion of airborne LiDAR with multispectral SPOT 5 image for enhancement of feature extraction using Dempster–Shafer theory
由: Saeidi, Vahideh, et al.
出版: (2014) -
Imaging spectroscopy and light detection and ranging data fusion for urban features extraction
由: Idrees, Mohammed, et al.
出版: (2013) -
Automatic landslide detection using Dempster–Shafer theory from LiDAR-derived data and orthophotos
由: Mezaal, Al-Karawi Mustafa Ridha, et al.
出版: (2017) -
Risk assessment of groundwater pollution with a new methodological framework: application of Dempster-Shafer theory and GIS
由: Neshat, Aminreza, et al.
出版: (2015) -
Dempster-shafer evidence theory for multi-bearing faults diagnosis
由: Kar, Hoou Hui, et al.
出版: (2017)