Maximizing urban features extraction from multi-sensor data with Dempster-Shafer theory and HSI data fusion techniques
This paper compares two multi-sensor data fusion techniques – Dempster-Sharfer Theory (DST) and Hue Saturation Intensity (HSI). The objective is to evaluate the effectiveness of the methods interm in space and time and quality of information extraction. LiDAR and hyperspectral data were fused using...
محفوظ في:
المؤلفون الرئيسيون: | Idrees, Mohammed Oludare, Saeidi, Vahideh, Pradhan, Biswajeet, Mohd Shafri, Helmi Zulhaidi |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Asian Online Journals
2015
|
الوصول للمادة أونلاين: | http://psasir.upm.edu.my/id/eprint/45421/1/LIDAR.pdf http://psasir.upm.edu.my/id/eprint/45421/ https://ajouronline.com/index.php/AJAS/article/view/2320 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Fusion of airborne LiDAR with multispectral SPOT 5 image for enhancement of feature extraction using Dempster–Shafer theory
بواسطة: Saeidi, Vahideh, وآخرون
منشور في: (2014) -
Imaging spectroscopy and light detection and ranging data fusion for urban features extraction
بواسطة: Idrees, Mohammed, وآخرون
منشور في: (2013) -
Automatic landslide detection using Dempster–Shafer theory from LiDAR-derived data and orthophotos
بواسطة: Mezaal, Al-Karawi Mustafa Ridha, وآخرون
منشور في: (2017) -
Risk assessment of groundwater pollution with a new methodological framework: application of Dempster-Shafer theory and GIS
بواسطة: Neshat, Aminreza, وآخرون
منشور في: (2015) -
Dempster-shafer evidence theory for multi-bearing faults diagnosis
بواسطة: Kar, Hoou Hui, وآخرون
منشور في: (2017)