Maximizing urban features extraction from multi-sensor data with Dempster-Shafer theory and HSI data fusion techniques
This paper compares two multi-sensor data fusion techniques – Dempster-Sharfer Theory (DST) and Hue Saturation Intensity (HSI). The objective is to evaluate the effectiveness of the methods interm in space and time and quality of information extraction. LiDAR and hyperspectral data were fused using...
保存先:
主要な著者: | Idrees, Mohammed Oludare, Saeidi, Vahideh, Pradhan, Biswajeet, Mohd Shafri, Helmi Zulhaidi |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Asian Online Journals
2015
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/45421/1/LIDAR.pdf http://psasir.upm.edu.my/id/eprint/45421/ https://ajouronline.com/index.php/AJAS/article/view/2320 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Fusion of airborne LiDAR with multispectral SPOT 5 image for enhancement of feature extraction using Dempster–Shafer theory
著者:: Saeidi, Vahideh, 等
出版事項: (2014) -
Imaging spectroscopy and light detection and ranging data fusion for urban features extraction
著者:: Idrees, Mohammed, 等
出版事項: (2013) -
Automatic landslide detection using Dempster–Shafer theory from LiDAR-derived data and orthophotos
著者:: Mezaal, Al-Karawi Mustafa Ridha, 等
出版事項: (2017) -
Risk assessment of groundwater pollution with a new methodological framework: application of Dempster-Shafer theory and GIS
著者:: Neshat, Aminreza, 等
出版事項: (2015) -
Dempster-shafer evidence theory for multi-bearing faults diagnosis
著者:: Kar, Hoou Hui, 等
出版事項: (2017)