A new classification model for a class imbalanced data set using genetic programming and support vector machines: case study for wilt disease classification
Class imbalanced data set is a state where each class of the given data set is not evenly distributed. When such case happens, most standard classifiers fail to recognize examples that belong to a minority class. Hence, several methods have been proposed to solve this problem such as resampling, mod...
保存先:
主要な著者: | Mohd Pozi, Muhammad Syafiq, Sulaiman, Md Nasir, Mustapha, Norwati, Perumal, Thinagaran |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Taylor & Francis
2015
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/43520/1/A%20new%20classification%20model%20for%20a%20class%20imbalanced%20data%20set%20using%20genetic%20programming.pdf http://psasir.upm.edu.my/id/eprint/43520/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
A new classifier based on combination of genetic programming and support vector machine in solving imbalanced classification problem
著者:: Mohd Pozi, Muhammad Syafiq
出版事項: (2016) -
Improving anomalous rare attack detection rate for intrusion detection system using support vector machine and genetic programming
著者:: Mohd Pozi, Muhammad Syafiq, 等
出版事項: (2016) -
Sentiment classification with concept drift and imbalanced class distributions
著者:: Jalilvand, A., 等
出版事項: (2016) -
SVGPM: evolving SVM decision function by using genetic programming to solve imbalanced classification problem
著者:: Mohd Pozi, Muhammad Syafiq, 等
出版事項: (2022) -
Logistic regression methods for classification of imbalanced data sets
著者:: Santi Puteri Rahayu, -
出版事項: (2012)