A new classification model for a class imbalanced data set using genetic programming and support vector machines: case study for wilt disease classification

Class imbalanced data set is a state where each class of the given data set is not evenly distributed. When such case happens, most standard classifiers fail to recognize examples that belong to a minority class. Hence, several methods have been proposed to solve this problem such as resampling, mod...

詳細記述

保存先:
書誌詳細
主要な著者: Mohd Pozi, Muhammad Syafiq, Sulaiman, Md Nasir, Mustapha, Norwati, Perumal, Thinagaran
フォーマット: 論文
言語:English
出版事項: Taylor & Francis 2015
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/43520/1/A%20new%20classification%20model%20for%20a%20class%20imbalanced%20data%20set%20using%20genetic%20programming.pdf
http://psasir.upm.edu.my/id/eprint/43520/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

類似資料