Nonlinear model-predictive control based on quasi-ARX radial-basis function-neural-network
A nonlinear model-predictive control (NMPC) is demonstrated for nonlinear systems using an improved fuzzy switching law. The proposed moving average filter fuzzy switching law (MAFFSL) is composed of a quasi-ARX radial basis function neural network (RBFNN) prediction model and a fuzzy switching law....
保存先:
主要な著者: | Sutrisno, Imam, Abu Jami’in, Mohammad, Hu, Jinglu, Marhaban, Mohammad Hamiruce, Mariun, Norman |
---|---|
フォーマット: | Conference or Workshop Item |
出版事項: |
IEEE
2014
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/41489/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
An adaptive predictive control based on a quasi-ARX neural network model
著者:: Abu Jami’in, Mohammad, 等
出版事項: (2014) -
A self-organizing quasi-linear ARX RBFN model for nonlinear dynamical systems identification
著者:: Sutrisno, Imam, 等
出版事項: (2016) -
Logic Programming In Radial Basis
Function Neural Networks
著者:: Hamadneh, Nawaf
出版事項: (2013) -
An active learning approach for radial basis function neural networks
著者:: Abdullah, S. S., 等
出版事項: (2006) -
Face detection using radial basis function neural networks
著者:: Abdullah, Shahrum Shah, 等
出版事項: (2008)