Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions
A study on the modification of rice husk by various carboxylic acids showed that tartaric acid modified rice husk (TARH) had the highest binding capacities for Cu and Pb. The carboxyl groups on the surface of the modified rice husk were primarily responsible for the sorption of metal ions. A series...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Elsevier
2003
|
Online Access: | http://psasir.upm.edu.my/id/eprint/40071/1/Removal%20of%20Cu%20and%20Pb%20by%20tartaric%20acid%20modified%20rice%20husk%20from%20aqueous%20solutions.pdf http://psasir.upm.edu.my/id/eprint/40071/7/1-s2.0-S0045653502005982-main.pdf http://psasir.upm.edu.my/id/eprint/40071/ http://www.sciencedirect.com/science/article/pii/S0045653502005982 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.40071 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.400712024-07-18T08:16:24Z http://psasir.upm.edu.my/id/eprint/40071/ Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions Wong, K. K. Lee, Chnoong Kheng Low, Kun She Haron, Md. Jelas A study on the modification of rice husk by various carboxylic acids showed that tartaric acid modified rice husk (TARH) had the highest binding capacities for Cu and Pb. The carboxyl groups on the surface of the modified rice husk were primarily responsible for the sorption of metal ions. A series of batch experiments using TARH as the sorbent for the removal of Cu and Pb showed that the sorption process was pH dependent, rapid and exothermic. The sorption process conformed to the Langmuir isotherm with maximum sorption capacities of 29 and 108 mg/g at 27±2 °C for Cu and Pb, respectively. The uptake increased with agitation rate. Decrease in sorbent particle size led to an increase in the sorption of metal ions and this could be explained by an increase in surface area and hence binding sites. Metal uptake was reduced in the presence of competitive cations and chelators. The affinity of TARH for Pb is greater than Cu. Elsevier 2003-01 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/40071/1/Removal%20of%20Cu%20and%20Pb%20by%20tartaric%20acid%20modified%20rice%20husk%20from%20aqueous%20solutions.pdf text en http://psasir.upm.edu.my/id/eprint/40071/7/1-s2.0-S0045653502005982-main.pdf Wong, K. K. and Lee, Chnoong Kheng and Low, Kun She and Haron, Md. Jelas (2003) Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere, 50 (1). pp. 23-28. ISSN 0045-6535; ESSN: 1879-1298 http://www.sciencedirect.com/science/article/pii/S0045653502005982 10.1016/S0045-6535(02)00598-2 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English English |
description |
A study on the modification of rice husk by various carboxylic acids showed that tartaric acid modified rice husk (TARH) had the highest binding capacities for Cu and Pb. The carboxyl groups on the surface of the modified rice husk were primarily responsible for the sorption of metal ions. A series of batch experiments using TARH as the sorbent for the removal of Cu and Pb showed that the sorption process was pH dependent, rapid and exothermic. The sorption process conformed to the Langmuir isotherm with maximum sorption capacities of 29 and 108 mg/g at 27±2 °C for Cu and Pb, respectively. The uptake increased with agitation rate. Decrease in sorbent particle size led to an increase in the sorption of metal ions and this could be explained by an increase in surface area and hence binding sites. Metal uptake was reduced in the presence of competitive cations and chelators. The affinity of TARH for Pb is greater than Cu. |
format |
Article |
author |
Wong, K. K. Lee, Chnoong Kheng Low, Kun She Haron, Md. Jelas |
spellingShingle |
Wong, K. K. Lee, Chnoong Kheng Low, Kun She Haron, Md. Jelas Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions |
author_facet |
Wong, K. K. Lee, Chnoong Kheng Low, Kun She Haron, Md. Jelas |
author_sort |
Wong, K. K. |
title |
Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions |
title_short |
Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions |
title_full |
Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions |
title_fullStr |
Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions |
title_full_unstemmed |
Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions |
title_sort |
removal of cu and pb by tartaric acid modified rice husk from aqueous solutions |
publisher |
Elsevier |
publishDate |
2003 |
url |
http://psasir.upm.edu.my/id/eprint/40071/1/Removal%20of%20Cu%20and%20Pb%20by%20tartaric%20acid%20modified%20rice%20husk%20from%20aqueous%20solutions.pdf http://psasir.upm.edu.my/id/eprint/40071/7/1-s2.0-S0045653502005982-main.pdf http://psasir.upm.edu.my/id/eprint/40071/ http://www.sciencedirect.com/science/article/pii/S0045653502005982 |
_version_ |
1805889930001383424 |
score |
13.211869 |