Hankel determinants of non-zero modulus Dixon elliptic functions via quasi C fractions
The Sumudu transform of the Dixon elliptic function with non-zero modulus α ≠ 0 for arbitrary powers N is given by the product of quasi C fractions. Next, by assuming the denominators of quasi C fractions as one and applying the Heliermanncorrespondence relating formal power series (Maclaurin series...
Saved in:
Main Authors: | Silambarasan, Rathinavel, Kilicman, Adem |
---|---|
格式: | Article |
语言: | English |
出版: |
MDPI
2019
|
在线阅读: | http://psasir.upm.edu.my/id/eprint/38395/1/38395.pdf http://psasir.upm.edu.my/id/eprint/38395/ https://www.mdpi.com/2504-3110/3/2/22 |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Computing new solutions of algebro-geometric equation using the discrete inverse Sumudu transform
由: Kilicman, Adem, et al.
出版: (2018) -
Solitons of dispersive wave steered from Navier–Bernoulli and Love’s hypothesis in cylindrical elastic rod with compressible Murnaghan’s materials
由: Silambarasan, Rathinavel, et al.
出版: (2023) -
New algorithms for optimizing the sizes of dixon and dixon dialytic matrices
由: Karimisangdehi, Seyedmehdi
出版: (2012) -
Hankel determinant for starlike and convex functions
由: Aini Janteng, et al.
出版: (2007) -
One Station / Dixon Jimoni.. [et al.]
由: Jimoni, Dixon, et al.
出版: (2015)