Permeability and antifouling augmentation of a hybrid PVDF-PEG membrane using nano-magnesium oxide as a powerful mediator for POME decolorization

This study focused on developing a hydrophilic hybrid polyvinylidene fluoride (PVDF)-polyethylene glycol (PEG) hollow membrane by incorporating Nano-magnesium oxide (NMO) as a potent antifouling mediator. The Nano-hybrid hollow fibers with varied loading of NMO (0 g; 0.25 g; 0.50 g; 0.75 g and 1.25...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdulsalam, Mohammed, Che Man, Hasfalina, Goh, Pei Sean, Md. Yunos, Khairul Faezah, Zainal Abidin, Zurina, Mohamad Idris, Aida Isma, Ismail, Ahmad Fauzi
Format: Article
Language:English
Published: MDPI 2020
Online Access:http://psasir.upm.edu.my/id/eprint/38133/1/38133.pdf
http://psasir.upm.edu.my/id/eprint/38133/
https://www.mdpi.com/2073-4360/12/3/549
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study focused on developing a hydrophilic hybrid polyvinylidene fluoride (PVDF)-polyethylene glycol (PEG) hollow membrane by incorporating Nano-magnesium oxide (NMO) as a potent antifouling mediator. The Nano-hybrid hollow fibers with varied loading of NMO (0 g; 0.25 g; 0.50 g; 0.75 g and 1.25 g) were spun through phase inversion technique. The resultants Nano-hybrid fibers were characterized and compared based on SEM, EDX, contact angle, surface zeta-potential, permeability flux, fouling resistance and color rejection from palm oil mill effluent (POME). Noticeably, the permeability flux, fouling resistance and color rejection improved with the increase in NMO loading. PVDF-PEG with 0.50 g-NMO loading displayed an outstanding performance with 198.35 L/m2·h, 61.33 L/m2·h and 74.65% of water flux, POME flux and color rejection from POME, respectively. More so, a remarkable fouling resistance were obtained such that the flux recovery, reversible fouling percentage and irreversible fouling percentage remains relatively steady at 90.98%, 61.39% and 7.68%, respectively, even after 3 cycles of continuous filtrations for a total period of 9 h. However, at excess loading of 0.75 and 1.25 g-NMO, deterioration in the flux and fouling resistance was observed. This was due to the agglomeration of nanoparticles within the matrix structure at the excessive loading.