Lightning fault classification for transmission line using support vector machine
Transmission lines are susceptible to a variety of phenomena that can cause system faults. The most prevalent cause of faults in the power system is lightning strikes, while other causes may include insulator failure, tree or crane encroachment. In this study, two machine learning algorithms, Suppor...
保存先:
主要な著者: | Asman, Saidatul Habsah, Ab Aziz, Nur Fadilah, Ab Kadir, Mohd Zainal Abidin, Ungku Amirulddin, Ungku Anisa, Roslan, Nurzanariah, Elsanabary, Ahmed |
---|---|
フォーマット: | Conference or Workshop Item |
出版事項: |
IEEE
2023
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/37453/ https://ieeexplore.ieee.org/document/10181525 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Lightning Fault Classification for Transmission Line Using Support Vector Machine
著者:: Asman S.H., 等
出版事項: (2024) -
Decision tree method for fault causes classification based on RMS-DWT analysis in 275 kV transmission lines network
著者:: Asman, Saidatul Habsah, 等
出版事項: (2021) -
Development of GIS-based ground flash density and its statistical analysis for lightning performance evaluation of transmission lines in Peninsular Malaysia
著者:: Roslan, Nurzanariah, 等
出版事項: (2024) -
Transient fault detection and location in power distribution network: a review of current practices and challenges in Malaysia
著者:: Asman, Saidatul Habsah, 等
出版事項: (2021) -
Impact of lightning on tower footing design of 500 kV transmission line
著者:: Mohd Nasir, N. A. F., 等
出版事項: (2023)