Optimization of natural lipstick formulation based on pitaya (Hylocereus polyrhizus) seed oil using D-optimal mixture experimental design
The D-optimal mixture experimental design was employed to optimize the melting point of natural lipstick based on pitaya (Hylocereus polyrhizus) seed oil. The influence of the main lipstick components-pitaya seed oil (10%-25% w/w), virgin coconut oil (25%-45% w/w), beeswax (5%-25% w/w), candelilla w...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI
2014
|
Online Access: | http://psasir.upm.edu.my/id/eprint/34778/1/Optimization%20of%20Natural%20Lipstick%20Formulation%20Based%20on%20Pitaya.pdf http://psasir.upm.edu.my/id/eprint/34778/ http://www.mdpi.com/1420-3049/19/10/16672 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The D-optimal mixture experimental design was employed to optimize the melting point of natural lipstick based on pitaya (Hylocereus polyrhizus) seed oil. The influence of the main lipstick components-pitaya seed oil (10%-25% w/w), virgin coconut oil (25%-45% w/w), beeswax (5%-25% w/w), candelilla wax (1%-5% w/w) and carnauba wax (1%-5% w/w)-were investigated with respect to the melting point properties of the lipstick formulation. The D-optimal mixture experimental design was applied to optimize the properties of lipstick by focusing on the melting point with respect to the above influencing components. The D-optimal mixture design analysis showed that the variation in the response (melting point) could be depicted as a quadratic function of the main components of the lipstick. The best combination of each significant factor determined by the D-optimal mixture design was established to be pitaya seed oil (25% w/w), virgin coconut oil (37% w/w), beeswax (17% w/w), candelilla wax (2% w/w) and carnauba wax (2% w/w). With respect to these factors, the 46.0 °C melting point property was observed experimentally, similar to the theoretical prediction of 46.5 °C. Carnauba wax is the most influential factor on this response (melting point) with its function being with respect to heat endurance. The quadratic polynomial model sufficiently fit the experimental data. |
---|