Investigation of the process conditions for hydrogen production by steam reforming of glycerol over Ni/Al2O3 catalyst using response surface methodology (RSM)

In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X1); the flow rate (X2); the catalyst weight (X3); the catalyst loading (X4) and the glycerol-wa...

詳細記述

保存先:
書誌詳細
主要な著者: Ebshish, Ali, Yaakob, Zahira, Yap, Taufiq Yun Hin, Bshish, Ahmed
フォーマット: 論文
言語:English
出版事項: MDPI 2014
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/34262/1/Investigation%20of%20the%20Process%20Conditions%20for%20Hydrogen%20Production%20by%20Steam%20Reforming%20of%20Glycerol%20over%20Ni%20Al2O3%20Catalyst%20Using%20Response%20Surface%20Methodology%20%28RSM%29.pdf
http://psasir.upm.edu.my/id/eprint/34262/
http://www.mdpi.com/1996-1944/7/3/2257
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:In this work; a response surface methodology (RSM) was implemented to investigate the process variables in a hydrogen production system. The effects of five independent variables; namely the temperature (X1); the flow rate (X2); the catalyst weight (X3); the catalyst loading (X4) and the glycerol-water molar ratio (X5) on the H2 yield (Y1) and the conversion of glycerol to gaseous products (Y2) were explored. Using multiple regression analysis; the experimental results of the H2 yield and the glycerol conversion to gases were fit to quadratic polynomial models. The proposed mathematical models have correlated the dependent factors well within the limits that were being examined. The best values of the process variables were a temperature of approximately 600 °C; a feed flow rate of 0.05 mL/min; a catalyst weight of 0.2 g; a catalyst loading of 20% and a glycerol-water molar ratio of approximately 12; where the H2 yield was predicted to be 57.6% and the conversion of glycerol was predicted to be 75%. To validate the proposed models; statistical analysis using a two-sample t-test was performed; and the results showed that the models could predict the responses satisfactorily within the limits of the variables that were studied.