Estimation of carbon in Jatropha curcas L. biomass and carbon footprint in its seed production

Biofuel from plants is claimed to be carbon neutral where unlike fossil fuel, carbon dioxide (CO2) produced from the combustion of biofuel is the same CO2 assimilated by the plant during photosynthesis. Among the plants that are attracting attention nowadays is Jatropha curcas. However, before biofu...

Full description

Saved in:
Bibliographic Details
Main Author: Sulaiman, Muhammad Firdaus
Format: Thesis
Language:English
English
Published: 2011
Online Access:http://psasir.upm.edu.my/id/eprint/30903/1/FP%202011%2046R.pdf
http://psasir.upm.edu.my/id/eprint/30903/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.upm.eprints.30903
record_format eprints
spelling my.upm.eprints.309032014-05-06T03:33:22Z http://psasir.upm.edu.my/id/eprint/30903/ Estimation of carbon in Jatropha curcas L. biomass and carbon footprint in its seed production Sulaiman, Muhammad Firdaus Biofuel from plants is claimed to be carbon neutral where unlike fossil fuel, carbon dioxide (CO2) produced from the combustion of biofuel is the same CO2 assimilated by the plant during photosynthesis. Among the plants that are attracting attention nowadays is Jatropha curcas. However, before biofuel from Jatropha curcas could be labeled as carbon neutral, CO2 emission and/or sequestration from all sources of the production chain must first be quantified. The present study was therefore carried out from July 2009 until July 2010 at the Tanah Merah Estate, Port Dickson, Negeri Sembilan to (i) quantify carbon fixation through dry matter production of Jatropha curcas biomass, (ii) compare the carbon balance between land cultivated with Jatropha curcas and the land in its native state and (iii) establish a carbon footprint of Jatropha curcas seed production. Measurements were made at two different plots, one plot planted with Jatropha curcas while the other plot was the native state of the area. Soil CO2 flux and soil total and labile carbon were measured monthly while monthly plant biomass of Jatropha curcas was estimated from monthly stem diameter measurements 20 trees and an established allometric equation. The estimated biomass was then converted to amount of carbon stored based on analysis of biomass carbon content. In comparing the carbon balance between the two types of land use, carbon balance was calculated as the amount of carbon stored in biomass minus the amount of carbon emitted as soil flux and emissions associated with the use of agricultural inputs. The carbon footprint of Jatropha curcas was calculated by dividing the total emitted carbon by the amount of yield (i.e. seed). Results from this study showed that 2.46 Mg carbon ha-1 was sequestered in biomass of Jatropha curcas while emission from Jatropha curcas cultivation was 9.12 Mg carbon ha-1. Soil carbon at both plots did not show any significant changes (P<0.05) throughout this study. Comparison between the two plots showed that emission from the plot planted with Jatropha curcas was marginally higher than at the natural state plot by only 1.20 Mg carbon ha-1. The minimum carbon footprint value of Jatropha curcas cultivation during the first year of its cultivation was 2.96 Mg carbon Mg seed-1. 2011-07 Thesis NonPeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/30903/1/FP%202011%2046R.pdf Sulaiman, Muhammad Firdaus (2011) Estimation of carbon in Jatropha curcas L. biomass and carbon footprint in its seed production. Masters thesis, Universiti Putra Malaysia. English
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
English
description Biofuel from plants is claimed to be carbon neutral where unlike fossil fuel, carbon dioxide (CO2) produced from the combustion of biofuel is the same CO2 assimilated by the plant during photosynthesis. Among the plants that are attracting attention nowadays is Jatropha curcas. However, before biofuel from Jatropha curcas could be labeled as carbon neutral, CO2 emission and/or sequestration from all sources of the production chain must first be quantified. The present study was therefore carried out from July 2009 until July 2010 at the Tanah Merah Estate, Port Dickson, Negeri Sembilan to (i) quantify carbon fixation through dry matter production of Jatropha curcas biomass, (ii) compare the carbon balance between land cultivated with Jatropha curcas and the land in its native state and (iii) establish a carbon footprint of Jatropha curcas seed production. Measurements were made at two different plots, one plot planted with Jatropha curcas while the other plot was the native state of the area. Soil CO2 flux and soil total and labile carbon were measured monthly while monthly plant biomass of Jatropha curcas was estimated from monthly stem diameter measurements 20 trees and an established allometric equation. The estimated biomass was then converted to amount of carbon stored based on analysis of biomass carbon content. In comparing the carbon balance between the two types of land use, carbon balance was calculated as the amount of carbon stored in biomass minus the amount of carbon emitted as soil flux and emissions associated with the use of agricultural inputs. The carbon footprint of Jatropha curcas was calculated by dividing the total emitted carbon by the amount of yield (i.e. seed). Results from this study showed that 2.46 Mg carbon ha-1 was sequestered in biomass of Jatropha curcas while emission from Jatropha curcas cultivation was 9.12 Mg carbon ha-1. Soil carbon at both plots did not show any significant changes (P<0.05) throughout this study. Comparison between the two plots showed that emission from the plot planted with Jatropha curcas was marginally higher than at the natural state plot by only 1.20 Mg carbon ha-1. The minimum carbon footprint value of Jatropha curcas cultivation during the first year of its cultivation was 2.96 Mg carbon Mg seed-1.
format Thesis
author Sulaiman, Muhammad Firdaus
spellingShingle Sulaiman, Muhammad Firdaus
Estimation of carbon in Jatropha curcas L. biomass and carbon footprint in its seed production
author_facet Sulaiman, Muhammad Firdaus
author_sort Sulaiman, Muhammad Firdaus
title Estimation of carbon in Jatropha curcas L. biomass and carbon footprint in its seed production
title_short Estimation of carbon in Jatropha curcas L. biomass and carbon footprint in its seed production
title_full Estimation of carbon in Jatropha curcas L. biomass and carbon footprint in its seed production
title_fullStr Estimation of carbon in Jatropha curcas L. biomass and carbon footprint in its seed production
title_full_unstemmed Estimation of carbon in Jatropha curcas L. biomass and carbon footprint in its seed production
title_sort estimation of carbon in jatropha curcas l. biomass and carbon footprint in its seed production
publishDate 2011
url http://psasir.upm.edu.my/id/eprint/30903/1/FP%202011%2046R.pdf
http://psasir.upm.edu.my/id/eprint/30903/
_version_ 1643830200290508800
score 13.223943