Approximating common fixed points for a finite family of asymptotically nonexpansive mappings using iteration process with errors terms

Let X be a real Banach space and K a nonempty closed convex subset of X. Let T i: K → K (i = 1, 2,., m) be m asymptotically nonexpansive mappings with sequence { k n } ⊂ [ 1, ∞), ∑ n = 1 ∞ (k n - 1) < ∞, and F = ∩ i = 1 m F (T i) ≠ ∅, where F is the set of fixed points of T i. Suppose that { a i...

詳細記述

保存先:
書誌詳細
主要な著者: Temir, Seyit, Kilicman, Adem
フォーマット: 論文
言語:English
出版事項: Hindawi Publishing Corporation 2013
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/30280/1/30280.pdf
http://psasir.upm.edu.my/id/eprint/30280/
http://www.hindawi.com/journals/aaa/2013/974317/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:Let X be a real Banach space and K a nonempty closed convex subset of X. Let T i: K → K (i = 1, 2,., m) be m asymptotically nonexpansive mappings with sequence { k n } ⊂ [ 1, ∞), ∑ n = 1 ∞ (k n - 1) < ∞, and F = ∩ i = 1 m F (T i) ≠ ∅, where F is the set of fixed points of T i. Suppose that { a i n } n = 1 ∞, { b i n } n = 1 ∞, i = 1,2,., m are appropriate sequences in [ 0,1 ] and { u i n } n = 1 ∞, i = 1,2,., m are bounded sequences in K such that ∑ n = 1 ∞ b i n < ∞ for i = 1,2,., m. We give { x n } defined by x 1 ∈ K, x n + 1 = (1 - a 1 n - b 1 n) y n + m - 2 + a 1 n T 1 n y n + m - 2 + b 1 n u 1 n, y n + m - 2 = (1 - a 2 n - b 2 n) y n + m - 3 + a 2 n T 2 n y n + m - 3 + b 2 n u 2 n,., y n + 2 = (1 - a (m - 2) n - b (m - 2) n) y n + 1 + a (m - 2) n T m - 2 n y n + 1 + b (m - 2) n u (m - 2) n, y n + 1 = (1 - a (m - 1) n - b (m - 1) n) y n + a (m - 1) n T m - 1 n y n + b (m - 1) n u (m - 1) n, y n = (1 - a m n - b m n) x n + a m n T m n x n + b m n u m n, m ≥ 2, n ≥ 1. The purpose of this paper is to study the above iteration scheme for approximating common fixed points of a finite family of asymptotically nonexpansive mappings and to prove weak and some strong convergence theorems for such mappings in real Banach spaces. The results obtained in this paper extend and improve some results in the existing literature.