Response surface modeling of processing parameters for the preparation of phytosterol Nanodispersions using an emulsification-evaporation technique.
The purpose of this study was to optimize the production parameters for water-soluble phytosterol nanodispersions. Response surface methodology (RSM) was employed to model and optimize three of the processing parameters: mixing time (t) by conventional homogenizer (1–20 min), mixing speed (v) by con...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Springer Verlag
2011
|
Online Access: | http://psasir.upm.edu.my/id/eprint/22271/1/Response%20surface%20modeling%20of%20processing%20parameters%20for%20the%20preparation%20of%20phytosterol%20Nanodispersions%20using%20an%20emulsification.pdf http://psasir.upm.edu.my/id/eprint/22271/ http://link.springer.com/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.22271 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.222712015-10-09T07:51:29Z http://psasir.upm.edu.my/id/eprint/22271/ Response surface modeling of processing parameters for the preparation of phytosterol Nanodispersions using an emulsification-evaporation technique. Wai, Fun Leong Kok, Whye Cheong Lai, Oi Ming Long, Kamariah Che Man, Yaakob Misran, Misni Tan, Chin Ping The purpose of this study was to optimize the production parameters for water-soluble phytosterol nanodispersions. Response surface methodology (RSM) was employed to model and optimize three of the processing parameters: mixing time (t) by conventional homogenizer (1–20 min), mixing speed (v) by conventional homogenizer (1,000–9,000 rpm) and homogenization pressure (P) by high-pressure homogenizer (0.1–80 MPa). All responses [i.e., mean particle size (PS), polydispersity index (PDI) and phytosterols concentration (Phyto, mg/l)] fitted well to a reduced quadratic model by multiple regressions after manual elimination. For PS, PDI and Phyto, the coefficients of determination (R 2) were 0.9902, 0.9065 and 0.8878, respectively. The optimized processing parameters were 15.25 min mixing time, 7,000 rpm mixing speed and homogenization pressure 42.4 MPa. In the produced nanodispersions, the corresponding responses for the optimized preparation conditions were a PS of 52 nm, PDI of 0.3390 and a Phyto of 336 mg/l. Springer Verlag 2011-05 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/22271/1/Response%20surface%20modeling%20of%20processing%20parameters%20for%20the%20preparation%20of%20phytosterol%20Nanodispersions%20using%20an%20emulsification.pdf Wai, Fun Leong and Kok, Whye Cheong and Lai, Oi Ming and Long, Kamariah and Che Man, Yaakob and Misran, Misni and Tan, Chin Ping (2011) Response surface modeling of processing parameters for the preparation of phytosterol Nanodispersions using an emulsification-evaporation technique. Journal of the American Oil Chemists' Society, 88 (5). pp. 717-725. ISSN 0003-021X; ESSN:1558-9331 http://link.springer.com/ 10.1007/s11746-010-1714-7 English |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English English |
description |
The purpose of this study was to optimize the production parameters for water-soluble phytosterol nanodispersions. Response surface methodology (RSM) was employed to model and optimize three of the processing parameters: mixing time (t) by conventional homogenizer (1–20 min), mixing speed (v) by conventional homogenizer (1,000–9,000 rpm) and homogenization pressure (P) by high-pressure homogenizer (0.1–80 MPa). All responses [i.e., mean particle size (PS), polydispersity index (PDI) and phytosterols concentration (Phyto, mg/l)] fitted well to a reduced quadratic model by multiple regressions after manual elimination. For PS, PDI and Phyto, the coefficients of determination (R 2) were 0.9902, 0.9065 and 0.8878, respectively. The optimized processing parameters were 15.25 min mixing time, 7,000 rpm mixing speed and homogenization pressure 42.4 MPa. In the produced nanodispersions, the corresponding responses for the optimized preparation conditions were a PS of 52 nm, PDI of 0.3390 and a Phyto of 336 mg/l. |
format |
Article |
author |
Wai, Fun Leong Kok, Whye Cheong Lai, Oi Ming Long, Kamariah Che Man, Yaakob Misran, Misni Tan, Chin Ping |
spellingShingle |
Wai, Fun Leong Kok, Whye Cheong Lai, Oi Ming Long, Kamariah Che Man, Yaakob Misran, Misni Tan, Chin Ping Response surface modeling of processing parameters for the preparation of phytosterol Nanodispersions using an emulsification-evaporation technique. |
author_facet |
Wai, Fun Leong Kok, Whye Cheong Lai, Oi Ming Long, Kamariah Che Man, Yaakob Misran, Misni Tan, Chin Ping |
author_sort |
Wai, Fun Leong |
title |
Response surface modeling of processing parameters for the preparation of phytosterol Nanodispersions using an emulsification-evaporation technique. |
title_short |
Response surface modeling of processing parameters for the preparation of phytosterol Nanodispersions using an emulsification-evaporation technique. |
title_full |
Response surface modeling of processing parameters for the preparation of phytosterol Nanodispersions using an emulsification-evaporation technique. |
title_fullStr |
Response surface modeling of processing parameters for the preparation of phytosterol Nanodispersions using an emulsification-evaporation technique. |
title_full_unstemmed |
Response surface modeling of processing parameters for the preparation of phytosterol Nanodispersions using an emulsification-evaporation technique. |
title_sort |
response surface modeling of processing parameters for the preparation of phytosterol nanodispersions using an emulsification-evaporation technique. |
publisher |
Springer Verlag |
publishDate |
2011 |
url |
http://psasir.upm.edu.my/id/eprint/22271/1/Response%20surface%20modeling%20of%20processing%20parameters%20for%20the%20preparation%20of%20phytosterol%20Nanodispersions%20using%20an%20emulsification.pdf http://psasir.upm.edu.my/id/eprint/22271/ http://link.springer.com/ |
_version_ |
1643827779283714048 |
score |
13.211869 |