Stability analysis and maximum profit of predator - prey population model with time delay and constant effort of harvesting
In this paper we present a deterministic and continuous model for predator - prey population model based on Lotka-Volterra model. The model is then developed by considering time delay and the two populations are subjected to constant effort of harvesting. We study analytically the necessary conditio...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute for Mathematical Research, Universiti Putra Malaysia
2008
|
Online Access: | http://psasir.upm.edu.my/id/eprint/16820/1/16820.pdf http://psasir.upm.edu.my/id/eprint/16820/ http://einspem.upm.edu.my/journal/volume2.2.php |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.16820 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.168202015-06-01T08:29:54Z http://psasir.upm.edu.my/id/eprint/16820/ Stability analysis and maximum profit of predator - prey population model with time delay and constant effort of harvesting Toaha, Syamsuddin Abu Hassan, Malik Ismail, Fudziah Leong, Wah June In this paper we present a deterministic and continuous model for predator - prey population model based on Lotka-Volterra model. The model is then developed by considering time delay and the two populations are subjected to constant effort of harvesting. We study analytically the necessary conditions of harvesting to ensure the existence of the equilibrium points and their stabilities. The methods used to analyze the stability are linearization and by investigation the eigenvalues of the Jacobian matrix. The results show that there exists a globally asymptotically stable equilibrium point in the positive quadrant for the model with and without harvesting. The time delay can induce instability and a Hopf bifurcation can occur. The stable equilibrium point for the model with harvesting is then related to profit function problem. We found that there exists a critical value of the effort that maximizes the profit and the equilibrium point also remains stable. This means that the predator and prey populations can live in coexistence and give maximum profit although the two populations are harvested with constant effort of harvesting. Institute for Mathematical Research, Universiti Putra Malaysia 2008 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/16820/1/16820.pdf Toaha, Syamsuddin and Abu Hassan, Malik and Ismail, Fudziah and Leong, Wah June (2008) Stability analysis and maximum profit of predator - prey population model with time delay and constant effort of harvesting. Malaysian Journal of Mathematical Sciences, 2 (2). pp. 147-159. ISSN 1823-8343; ESSN: 2289-750X http://einspem.upm.edu.my/journal/volume2.2.php |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
language |
English |
description |
In this paper we present a deterministic and continuous model for predator - prey population model based on Lotka-Volterra model. The model is then developed by considering time delay and the two populations are subjected to constant effort of harvesting. We study analytically the necessary conditions of harvesting to ensure the
existence of the equilibrium points and their stabilities. The methods used to analyze the stability are linearization and by investigation the eigenvalues of the Jacobian
matrix. The results show that there exists a globally asymptotically stable equilibrium point in the positive quadrant for the model with and without harvesting. The time
delay can induce instability and a Hopf bifurcation can occur. The stable equilibrium point for the model with harvesting is then related to profit function problem. We
found that there exists a critical value of the effort that maximizes the profit and the equilibrium point also remains stable. This means that the predator and prey populations can live in coexistence and give maximum profit although the two populations are harvested with constant effort of harvesting. |
format |
Article |
author |
Toaha, Syamsuddin Abu Hassan, Malik Ismail, Fudziah Leong, Wah June |
spellingShingle |
Toaha, Syamsuddin Abu Hassan, Malik Ismail, Fudziah Leong, Wah June Stability analysis and maximum profit of predator - prey population model with time delay and constant effort of harvesting |
author_facet |
Toaha, Syamsuddin Abu Hassan, Malik Ismail, Fudziah Leong, Wah June |
author_sort |
Toaha, Syamsuddin |
title |
Stability analysis and maximum profit of predator - prey population model with time delay and constant effort of harvesting |
title_short |
Stability analysis and maximum profit of predator - prey population model with time delay and constant effort of harvesting |
title_full |
Stability analysis and maximum profit of predator - prey population model with time delay and constant effort of harvesting |
title_fullStr |
Stability analysis and maximum profit of predator - prey population model with time delay and constant effort of harvesting |
title_full_unstemmed |
Stability analysis and maximum profit of predator - prey population model with time delay and constant effort of harvesting |
title_sort |
stability analysis and maximum profit of predator - prey population model with time delay and constant effort of harvesting |
publisher |
Institute for Mathematical Research, Universiti Putra Malaysia |
publishDate |
2008 |
url |
http://psasir.upm.edu.my/id/eprint/16820/1/16820.pdf http://psasir.upm.edu.my/id/eprint/16820/ http://einspem.upm.edu.my/journal/volume2.2.php |
_version_ |
1643826329136660480 |
score |
13.250246 |