Runge-Kutta-Nystrom Methods For Solving Oscillatory Problems

New Runge-Kutta-Nyström (RKN) methods are derived for solving system of second-order Ordinary Differential Equations (ODEs) in which the solutions are in the oscillatory form. The dispersion and dissipation relations are imposed to get methods with the highest possible order of dispersion and dis...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Senu, Norazak
التنسيق: أطروحة
اللغة:English
منشور في: 2010
الوصول للمادة أونلاين:http://psasir.upm.edu.my/id/eprint/12438/1/FS_2010_23A.pdf
http://psasir.upm.edu.my/id/eprint/12438/
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
id my.upm.eprints.12438
record_format eprints
spelling my.upm.eprints.124382015-05-13T06:46:55Z http://psasir.upm.edu.my/id/eprint/12438/ Runge-Kutta-Nystrom Methods For Solving Oscillatory Problems Senu, Norazak New Runge-Kutta-Nyström (RKN) methods are derived for solving system of second-order Ordinary Differential Equations (ODEs) in which the solutions are in the oscillatory form. The dispersion and dissipation relations are imposed to get methods with the highest possible order of dispersion and dissipation. The derivation of Embedded Explicit RKN (ERKN) methods for variable step size codes are also given. The strategies in choosing the free parameters are also discussed. We analyze the numerical behavior of the RKN and ERKN methods both theoretically and experimentally and comparisons are made over the existing methods. In the second part of this thesis, a Block Embedded Explicit RKN (BERKN) method are developed. The implementation of BERKN method is discussed. The numerical results are compared with non block method. We find that the new code on Block Embedded Explicit RKN (BERKN) method is more efficient for solving system of second-order ODEs directly. Next, we discussed the derivation of Diagonally Implicit RKN (DIRKN) methods for solving stiff second order ODEs in which the solutions are oscillating functions. The dispersion and dissipation relations are developed and again are imposed in the derivation of the methods. For solving oscillatory problems with high frequency, method with P-stability property is discussed. We also derive the Embedded Diagonally Implicit RKN (EDIRKN) methods for variable step size codes. To see the preciseness and effectiveness of the methods, the constant and variable step size codes are developed and numerical results are compared with current methods given in the literature. Finally, the Parallel Embedded Explicit RKN (PERKN) method is developed. The parallel implementation of PERKN on the parallel machine is discussed. The performance of the PERKN algorithm for solving large system of ODEs are presented. We observe that the PERKN gives the better performance when solving large system of ODEs. In conclusion, the new codes developed in this thesis are suitable for solving system of second-order ODEs in which the solutions are in the oscillatory form. 2010-02 Thesis NonPeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/12438/1/FS_2010_23A.pdf Senu, Norazak (2010) Runge-Kutta-Nystrom Methods For Solving Oscillatory Problems. PhD thesis, Universiti Putra Malaysia.
institution Universiti Putra Malaysia
building UPM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Putra Malaysia
content_source UPM Institutional Repository
url_provider http://psasir.upm.edu.my/
language English
description New Runge-Kutta-Nyström (RKN) methods are derived for solving system of second-order Ordinary Differential Equations (ODEs) in which the solutions are in the oscillatory form. The dispersion and dissipation relations are imposed to get methods with the highest possible order of dispersion and dissipation. The derivation of Embedded Explicit RKN (ERKN) methods for variable step size codes are also given. The strategies in choosing the free parameters are also discussed. We analyze the numerical behavior of the RKN and ERKN methods both theoretically and experimentally and comparisons are made over the existing methods. In the second part of this thesis, a Block Embedded Explicit RKN (BERKN) method are developed. The implementation of BERKN method is discussed. The numerical results are compared with non block method. We find that the new code on Block Embedded Explicit RKN (BERKN) method is more efficient for solving system of second-order ODEs directly. Next, we discussed the derivation of Diagonally Implicit RKN (DIRKN) methods for solving stiff second order ODEs in which the solutions are oscillating functions. The dispersion and dissipation relations are developed and again are imposed in the derivation of the methods. For solving oscillatory problems with high frequency, method with P-stability property is discussed. We also derive the Embedded Diagonally Implicit RKN (EDIRKN) methods for variable step size codes. To see the preciseness and effectiveness of the methods, the constant and variable step size codes are developed and numerical results are compared with current methods given in the literature. Finally, the Parallel Embedded Explicit RKN (PERKN) method is developed. The parallel implementation of PERKN on the parallel machine is discussed. The performance of the PERKN algorithm for solving large system of ODEs are presented. We observe that the PERKN gives the better performance when solving large system of ODEs. In conclusion, the new codes developed in this thesis are suitable for solving system of second-order ODEs in which the solutions are in the oscillatory form.
format Thesis
author Senu, Norazak
spellingShingle Senu, Norazak
Runge-Kutta-Nystrom Methods For Solving Oscillatory Problems
author_facet Senu, Norazak
author_sort Senu, Norazak
title Runge-Kutta-Nystrom Methods For Solving Oscillatory Problems
title_short Runge-Kutta-Nystrom Methods For Solving Oscillatory Problems
title_full Runge-Kutta-Nystrom Methods For Solving Oscillatory Problems
title_fullStr Runge-Kutta-Nystrom Methods For Solving Oscillatory Problems
title_full_unstemmed Runge-Kutta-Nystrom Methods For Solving Oscillatory Problems
title_sort runge-kutta-nystrom methods for solving oscillatory problems
publishDate 2010
url http://psasir.upm.edu.my/id/eprint/12438/1/FS_2010_23A.pdf
http://psasir.upm.edu.my/id/eprint/12438/
_version_ 1643825039394471936
score 13.251813