Exploring of cellulose nanocrystals from lignocellulosic sources as a powerful adsorbent for wastewater remediation
The increasing global concern over the contamination of natural resources, especially freshwater, has intensified the need for effective water treatment methods. This article focuses on the utilization of Cellulose nanocrystals (CNCs), sourced from lignocellulosic materials, for addressing environme...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Published: |
Springer
2024
|
Online Access: | http://psasir.upm.edu.my/id/eprint/115020/ https://link.springer.com/article/10.1007/s10924-024-03227-3?error=cookies_not_supported&code=c711a5cb-6f2b-4248-af9d-06ebc6360e5a |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.upm.eprints.115020 |
---|---|
record_format |
eprints |
spelling |
my.upm.eprints.1150202025-02-17T04:49:14Z http://psasir.upm.edu.my/id/eprint/115020/ Exploring of cellulose nanocrystals from lignocellulosic sources as a powerful adsorbent for wastewater remediation Norfarhana, A. S. Khoo, P. S. Ilyas, R. A. Ab Hamid, N. H. Aisyah, H. A. Norrrahim, Mohd Nor Faiz Knight, V. F. Rani, M. S. A. Septevani, Athanasia Amanda Syafri, Edi Annamalai, Pratheep K. The increasing global concern over the contamination of natural resources, especially freshwater, has intensified the need for effective water treatment methods. This article focuses on the utilization of Cellulose nanocrystals (CNCs), sourced from lignocellulosic materials, for addressing environmental challenges. CNCs a product of cellulose-rich sources has emerged as a versatile and eco-friendly solution. CNCs boast unique chemical and physical properties that render them highly suitable for water remediation. Their nanoscale size, excellent biocompatibility, and recyclability make them stand out. Moreover, CNCs possess a substantial surface area and can be modified with functional groups to enhance their adsorption capabilities. Consequently, CNCs exhibit remarkable efficiency in removing a wide array of pollutants from wastewater, including heavy metals, pesticides, dyes, pharmaceuticals, organic micropollutants, oils, and organic solvents. This review delves into the adsorption mechanisms, surface modifications, and factors influencing CNCs’ adsorption capacities. It also highlights the impressive adsorption efficiencies of CNC-based adsorbents across diverse pollutant types. Employing CNCs in water remediation offers a promising, eco-friendly solution, as they can undergo treatment without producing toxic intermediates. As research and development in this field progress, CNC-based adsorbents are expected to become even more effective and find expanded applications in combating water pollution. Springer 2024-04-05 Article PeerReviewed Norfarhana, A. S. and Khoo, P. S. and Ilyas, R. A. and Ab Hamid, N. H. and Aisyah, H. A. and Norrrahim, Mohd Nor Faiz and Knight, V. F. and Rani, M. S. A. and Septevani, Athanasia Amanda and Syafri, Edi and Annamalai, Pratheep K. (2024) Exploring of cellulose nanocrystals from lignocellulosic sources as a powerful adsorbent for wastewater remediation. Journal of Polymers and the Environment, 32. pp. 4071-4101. ISSN 1566-2543; eISSN: 1572-8919 https://link.springer.com/article/10.1007/s10924-024-03227-3?error=cookies_not_supported&code=c711a5cb-6f2b-4248-af9d-06ebc6360e5a 10.1007/s10924-024-03227-3 |
institution |
Universiti Putra Malaysia |
building |
UPM Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Putra Malaysia |
content_source |
UPM Institutional Repository |
url_provider |
http://psasir.upm.edu.my/ |
description |
The increasing global concern over the contamination of natural resources, especially freshwater, has intensified the need for effective water treatment methods. This article focuses on the utilization of Cellulose nanocrystals (CNCs), sourced from lignocellulosic materials, for addressing environmental challenges. CNCs a product of cellulose-rich sources has emerged as a versatile and eco-friendly solution. CNCs boast unique chemical and physical properties that render them highly suitable for water remediation. Their nanoscale size, excellent biocompatibility, and recyclability make them stand out. Moreover, CNCs possess a substantial surface area and can be modified with functional groups to enhance their adsorption capabilities. Consequently, CNCs exhibit remarkable efficiency in removing a wide array of pollutants from wastewater, including heavy metals, pesticides, dyes, pharmaceuticals, organic micropollutants, oils, and organic solvents. This review delves into the adsorption mechanisms, surface modifications, and factors influencing CNCs’ adsorption capacities. It also highlights the impressive adsorption efficiencies of CNC-based adsorbents across diverse pollutant types. Employing CNCs in water remediation offers a promising, eco-friendly solution, as they can undergo treatment without producing toxic intermediates. As research and development in this field progress, CNC-based adsorbents are expected to become even more effective and find expanded applications in combating water pollution. |
format |
Article |
author |
Norfarhana, A. S. Khoo, P. S. Ilyas, R. A. Ab Hamid, N. H. Aisyah, H. A. Norrrahim, Mohd Nor Faiz Knight, V. F. Rani, M. S. A. Septevani, Athanasia Amanda Syafri, Edi Annamalai, Pratheep K. |
spellingShingle |
Norfarhana, A. S. Khoo, P. S. Ilyas, R. A. Ab Hamid, N. H. Aisyah, H. A. Norrrahim, Mohd Nor Faiz Knight, V. F. Rani, M. S. A. Septevani, Athanasia Amanda Syafri, Edi Annamalai, Pratheep K. Exploring of cellulose nanocrystals from lignocellulosic sources as a powerful adsorbent for wastewater remediation |
author_facet |
Norfarhana, A. S. Khoo, P. S. Ilyas, R. A. Ab Hamid, N. H. Aisyah, H. A. Norrrahim, Mohd Nor Faiz Knight, V. F. Rani, M. S. A. Septevani, Athanasia Amanda Syafri, Edi Annamalai, Pratheep K. |
author_sort |
Norfarhana, A. S. |
title |
Exploring of cellulose nanocrystals from lignocellulosic sources as a powerful adsorbent for wastewater remediation |
title_short |
Exploring of cellulose nanocrystals from lignocellulosic sources as a powerful adsorbent for wastewater remediation |
title_full |
Exploring of cellulose nanocrystals from lignocellulosic sources as a powerful adsorbent for wastewater remediation |
title_fullStr |
Exploring of cellulose nanocrystals from lignocellulosic sources as a powerful adsorbent for wastewater remediation |
title_full_unstemmed |
Exploring of cellulose nanocrystals from lignocellulosic sources as a powerful adsorbent for wastewater remediation |
title_sort |
exploring of cellulose nanocrystals from lignocellulosic sources as a powerful adsorbent for wastewater remediation |
publisher |
Springer |
publishDate |
2024 |
url |
http://psasir.upm.edu.my/id/eprint/115020/ https://link.springer.com/article/10.1007/s10924-024-03227-3?error=cookies_not_supported&code=c711a5cb-6f2b-4248-af9d-06ebc6360e5a |
_version_ |
1825162415979888640 |
score |
13.244413 |