Chromatic equivalence classes of certain cycles with edges
Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, written G∼H, if P(G) = P(H). A graph G is chromatically unique if for any graph H, G∼H implies that G is isomorphic with H. In this paper, we give the necessary and sufficient conditions for a fam...
保存先:
主要な著者: | Omoomi, Behnaz, Peng, Yee-Hock |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
2001
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/114099/1/114099.pdf http://psasir.upm.edu.my/id/eprint/114099/ https://linkinghub.elsevier.com/retrieve/pii/S0012365X00003551 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Chromatic Equivalence Classes and Chromatic Defining Numbers of Certain Graphs
著者:: Omoomi, Behnaz
出版事項: (2001) -
Chromatic equivalence classes of certain generalized polygon trees, III
著者:: Omoomi, Behnaz, 等
出版事項: (2003) -
Chromatic equivalence class of the join of certain tripartite graphs
著者:: Lau, Gee Choon, 等
出版事項: (2007) -
Chromatic equivalence classes of certain generalized polygon trees
著者:: Peng, Yee Hock, 等
出版事項: (1997) -
On the chromaticity of complete multipartite graphs with certain edges added
著者:: Lau, G. C., 等
出版事項: (2008)