Chromatic equivalence classes of certain cycles with edges
Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, written G∼H, if P(G) = P(H). A graph G is chromatically unique if for any graph H, G∼H implies that G is isomorphic with H. In this paper, we give the necessary and sufficient conditions for a fam...
Saved in:
Main Authors: | Omoomi, Behnaz, Peng, Yee-Hock |
---|---|
格式: | Article |
語言: | English |
出版: |
2001
|
在線閱讀: | http://psasir.upm.edu.my/id/eprint/114099/1/114099.pdf http://psasir.upm.edu.my/id/eprint/114099/ https://linkinghub.elsevier.com/retrieve/pii/S0012365X00003551 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Chromatic Equivalence Classes and Chromatic Defining Numbers of Certain Graphs
由: Omoomi, Behnaz
出版: (2001) -
Chromatic equivalence classes of certain generalized polygon trees, III
由: Omoomi, Behnaz, et al.
出版: (2003) -
Chromatic equivalence class of the join of certain tripartite graphs
由: Lau, Gee Choon, et al.
出版: (2007) -
Chromatic equivalence classes of certain generalized polygon trees
由: Peng, Yee Hock, et al.
出版: (1997) -
On the chromaticity of complete multipartite graphs with certain edges added
由: Lau, G. C., et al.
出版: (2008)